Advances in pervasive computing and sensor technologies have paved the way for the explosive living ubiquity of geo-physical data streams. The management of the massive and unbounded streams of sensor data produced poses several challenges, including the real-time application of summarization techniques, which should allow the storage and query of this amount of georeferenced and timestamped data in a server with limited memory. In order to face this issue, we have designed a summarization technique, called SUMATRA, which segments the stream into windows, computes summaries window-by-window and stores these summaries in a database. Trend clusters are discovered as summaries of each window. They are clusters of georeferenced data which vary according to a similar trend along the window time horizon. Several compression techniques are also investigated to derive a compact, but accurate representation of these trends for storage in the database. A learning strategy to automatically choose the best trend compression technique is designed. Finally, an in-network modality for tree-based trend cluster discovery is investigated in order to achieve an efficacious aggregation schema which drastically reduces the number of bytes transmitted across the network and maintains a longer network lifespan. This schema is mapped onto the routing structure of a tree-based WSN topology. Experiments performed with several data streams of real sensor networks assess the summarization capability, the accuracy and the efficiency of the proposed summarization schema.

Summarizing numeric spatial data streams by trend cluster discovery

APPICE, ANNALISA;MALERBA, Donato
2013-01-01

Abstract

Advances in pervasive computing and sensor technologies have paved the way for the explosive living ubiquity of geo-physical data streams. The management of the massive and unbounded streams of sensor data produced poses several challenges, including the real-time application of summarization techniques, which should allow the storage and query of this amount of georeferenced and timestamped data in a server with limited memory. In order to face this issue, we have designed a summarization technique, called SUMATRA, which segments the stream into windows, computes summaries window-by-window and stores these summaries in a database. Trend clusters are discovered as summaries of each window. They are clusters of georeferenced data which vary according to a similar trend along the window time horizon. Several compression techniques are also investigated to derive a compact, but accurate representation of these trends for storage in the database. A learning strategy to automatically choose the best trend compression technique is designed. Finally, an in-network modality for tree-based trend cluster discovery is investigated in order to achieve an efficacious aggregation schema which drastically reduces the number of bytes transmitted across the network and maintains a longer network lifespan. This schema is mapped onto the routing structure of a tree-based WSN topology. Experiments performed with several data streams of real sensor networks assess the summarization capability, the accuracy and the efficiency of the proposed summarization schema.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/34910
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 18
social impact