We consider equations of the form $Delta u +lambda^2 V(x)e^{,u}= ho$ in various two dimensional settings. We assume that $V>0$ is a given function, $lambda>0$ is a small parameter and $ ho=mathcal O(1)$ or $ ho o +infty$ as $lambda o 0$. In a recent paper we prove the existence of the maximal solutions for a particular choice $Vequiv 1$, $ ho=0$ when the problem is posed in doubly connected domains under Dirichlet boundary conditions. We related the maximal solutions with a novel free boundary problem. The purpose of this note is to derive the corresponding free boundary problems in other settings. Solvability of such problems is, viewed formally, the necessary condition for the existence of the maximal solution.

Free boundary problems arising in the theory of maximal solutions of equations with exponential nonlinearities

Giusi Vaira
2018-01-01

Abstract

We consider equations of the form $Delta u +lambda^2 V(x)e^{,u}= ho$ in various two dimensional settings. We assume that $V>0$ is a given function, $lambda>0$ is a small parameter and $ ho=mathcal O(1)$ or $ ho o +infty$ as $lambda o 0$. In a recent paper we prove the existence of the maximal solutions for a particular choice $Vequiv 1$, $ ho=0$ when the problem is posed in doubly connected domains under Dirichlet boundary conditions. We related the maximal solutions with a novel free boundary problem. The purpose of this note is to derive the corresponding free boundary problems in other settings. Solvability of such problems is, viewed formally, the necessary condition for the existence of the maximal solution.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/348682
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact