Crowd counting on the drone platform is an interesting topic in computer vision, which brings new challenges such as small object inference, background clutter and wide viewpoint. However, there are few algorithms focusing on crowd counting on the drone-captured data due to the lack of comprehensive datasets. To this end, we collect a large-scale dataset and organize the Vision Meets Drone Crowd Counting Challenge (VisDrone-CC2020) in conjunction with the 16th European Conference on Computer Vision (ECCV 2020) to promote the developments in the related fields. The collected dataset is formed by 3, 360 images, including 2, 460 images for training, and 900 images for testing. Specifically, we manually annotate persons with points in each video frame. There are 14 algorithms from 15 institutes submitted to the VisDrone-CC2020 Challenge. We provide a detailed analysis of the evaluation results and conclude the challenge. More information can be found at the website: http://www.aiskyeye.com/.

VisDrone-CC2020: The Vision Meets Drone Crowd Counting Challenge Results

Castiello, Ciro;Mencar, Corrado;Vessio, Gennaro;Castellano, Giovanna;
2020-01-01

Abstract

Crowd counting on the drone platform is an interesting topic in computer vision, which brings new challenges such as small object inference, background clutter and wide viewpoint. However, there are few algorithms focusing on crowd counting on the drone-captured data due to the lack of comprehensive datasets. To this end, we collect a large-scale dataset and organize the Vision Meets Drone Crowd Counting Challenge (VisDrone-CC2020) in conjunction with the 16th European Conference on Computer Vision (ECCV 2020) to promote the developments in the related fields. The collected dataset is formed by 3, 360 images, including 2, 460 images for training, and 900 images for testing. Specifically, we manually annotate persons with points in each video frame. There are 14 algorithms from 15 institutes submitted to the VisDrone-CC2020 Challenge. We provide a detailed analysis of the evaluation results and conclude the challenge. More information can be found at the website: http://www.aiskyeye.com/.
2020
978-3-030-66822-8
978-3-030-66823-5
File in questo prodotto:
File Dimensione Formato  
2020_ECCV_b.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.33 MB
Formato Adobe PDF
2.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2107.08766v1.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/348190
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 291
  • ???jsp.display-item.citation.isi??? ND
social impact