Amyloid beta peptide (AP) is a natural peptide, normally released into the cerebrospinal fluid (CSF), that plays a key role in Alzheimer’s disease. The conversion of the peptide from a native soluble form to a non-native and often insoluble form, such as small and large aggregates, protofibrils and fibrils of AP appears to be implicated in the pathogenesis of AD. Although the molecular mechanisms of AP neurotoxicity are not fully understood, a large body of data suggests that the primary target of amyloid peptides is the cell membrane of neurons, that may modulate the structural and functional conversion of AP into assemblies involved in pathological processes. In our study, we provide a systematic investigation of AP1-42’s ability to incorporate and form channel-like events in membranes of different lipid composition and focus on cholesterol and its oxidation products. We propose that cholesterol and its oxidation products can be considered neuroprotective factors because a) by favouring AP1-42 insertion into membranes, the fibrillation/clearance balance shifts toward clearance; b) by shifting channel selectivity toward anions, the membrane potential is moved far from the threshold of membrane excitability, thus decreasing the influx of calcium into the cell.

AβP1-42 incorporation and channel formation in planar lipid membranes: the role of cholesterol and its oxidation products

MELELEO, DANIELA ADDOLORATA;
2013-01-01

Abstract

Amyloid beta peptide (AP) is a natural peptide, normally released into the cerebrospinal fluid (CSF), that plays a key role in Alzheimer’s disease. The conversion of the peptide from a native soluble form to a non-native and often insoluble form, such as small and large aggregates, protofibrils and fibrils of AP appears to be implicated in the pathogenesis of AD. Although the molecular mechanisms of AP neurotoxicity are not fully understood, a large body of data suggests that the primary target of amyloid peptides is the cell membrane of neurons, that may modulate the structural and functional conversion of AP into assemblies involved in pathological processes. In our study, we provide a systematic investigation of AP1-42’s ability to incorporate and form channel-like events in membranes of different lipid composition and focus on cholesterol and its oxidation products. We propose that cholesterol and its oxidation products can be considered neuroprotective factors because a) by favouring AP1-42 insertion into membranes, the fibrillation/clearance balance shifts toward clearance; b) by shifting channel selectivity toward anions, the membrane potential is moved far from the threshold of membrane excitability, thus decreasing the influx of calcium into the cell.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/34791
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact