Fracture healing is a complex physiologic process, relying on the crucial interplay between biological and mechanical factors. It is generally assessed using imaging modalities, including conventional radiology, CT, MRI and ultrasound (US), based on the fracture and patient features. Although these techniques are routinely used in orthopaedic clinical practice, unfortunately, they do not provide any information about the biomechanical status of the fracture site. Therefore, in recent years, several non-invasive techniques have been proposed to assess bone healing using ultrasonic wave propagation, changes in electrical properties of bones and callus stiffness measurement. Moreover, different research groups are currently developing smart orthopaedic implants (plates, intramedullary nails and external fixators), able to provide information about the fracture healing process. These devices could significantly improve orthopaedic and trauma clinical practice in the future and, at the same time, reduce patients’ exposure to X-rays. This study aims to define the role of traditional imaging techniques and emerging technologies in the assessment of the fracture healing process.

Assessment of fracture healing in orthopaedic trauma

Bizzoca D.;Vicenti G.;Solarino G.;Moretti B.
2020-01-01

Abstract

Fracture healing is a complex physiologic process, relying on the crucial interplay between biological and mechanical factors. It is generally assessed using imaging modalities, including conventional radiology, CT, MRI and ultrasound (US), based on the fracture and patient features. Although these techniques are routinely used in orthopaedic clinical practice, unfortunately, they do not provide any information about the biomechanical status of the fracture site. Therefore, in recent years, several non-invasive techniques have been proposed to assess bone healing using ultrasonic wave propagation, changes in electrical properties of bones and callus stiffness measurement. Moreover, different research groups are currently developing smart orthopaedic implants (plates, intramedullary nails and external fixators), able to provide information about the fracture healing process. These devices could significantly improve orthopaedic and trauma clinical practice in the future and, at the same time, reduce patients’ exposure to X-rays. This study aims to define the role of traditional imaging techniques and emerging technologies in the assessment of the fracture healing process.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/346003
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact