Gravitational waves represent a new opportunity to study and interpret phenomena from the universe. In order to efficiently detect and analyze them, advanced and automatic signal processing and machine learning techniques could help to support standard tools and techniques. Another challenge relates to the large volume of data collected by the detectors on a daily basis, which creates a gap between the amount of data generated and effectively analyzed. In this paper, we propose two approaches involving deep auto-encoder models to analyze time series collected from Gravitational Waves detectors and provide a classification label (noise or real signal). The purpose is to discard noisy time series accurately and identify time series that potentially contain a real phenomenon. Experiments carried out on three datasets show that the proposed approaches implemented using the Apache Spark framework, represent a valuable machine learning tool for astrophysical analysis, offering competitive accuracy and scalability performances with respect to state-of-the-art methods.
Scalable auto-encoders for gravitational waves detection from time series data
Corizzo R.;Ceci M.;
2020-01-01
Abstract
Gravitational waves represent a new opportunity to study and interpret phenomena from the universe. In order to efficiently detect and analyze them, advanced and automatic signal processing and machine learning techniques could help to support standard tools and techniques. Another challenge relates to the large volume of data collected by the detectors on a daily basis, which creates a gap between the amount of data generated and effectively analyzed. In this paper, we propose two approaches involving deep auto-encoder models to analyze time series collected from Gravitational Waves detectors and provide a classification label (noise or real signal). The purpose is to discard noisy time series accurately and identify time series that potentially contain a real phenomenon. Experiments carried out on three datasets show that the proposed approaches implemented using the Apache Spark framework, represent a valuable machine learning tool for astrophysical analysis, offering competitive accuracy and scalability performances with respect to state-of-the-art methods.| File | Dimensione | Formato | |
|---|---|---|---|
|
IJ_41__ESWA_GW_1-s2.0-S0957417420301986-main.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.09 MB
Formato
Adobe PDF
|
3.09 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
GW___ESWA.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
2.18 MB
Formato
Adobe PDF
|
2.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


