Sequence mining is one of the most investigated tasks in data mining and it has been studied under several perspectives. With the rise of Big Data technologies, the perspective of efficiency becomes prominent especially when mining massive sequences. In this paper, we perform a thorough experimental evaluation of several algorithms for sequential pattern mining and we provide an analysis of the results focusing on the different algorithmic choices and how these affect the performance of each algorithm. Experiments performed on real-world and synthetic datasets highlight relevant differences between existing algorithms and provide indications for Big Data scenarios.

An empirical evaluation of sequential pattern mining algorithms

Loglisci C.;Ceci M.;Malerba D.
2018-01-01

Abstract

Sequence mining is one of the most investigated tasks in data mining and it has been studied under several perspectives. With the rise of Big Data technologies, the perspective of efficiency becomes prominent especially when mining massive sequences. In this paper, we perform a thorough experimental evaluation of several algorithms for sequential pattern mining and we provide an analysis of the results focusing on the different algorithmic choices and how these affect the performance of each algorithm. Experiments performed on real-world and synthetic datasets highlight relevant differences between existing algorithms and provide indications for Big Data scenarios.
2018
978-3-319-75927-2
978-3-319-75928-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/343259
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact