This work describes the plasma-enhanced chemical vapor deposition of thin films at atmospheric pressure using dielectric barrier discharges fed with argon, oxygen and different methyldisiloxanes, i.e., hexamethyldisiloxane, pentamethyldisiloxane, and 1,1,3,3-tetramethyldisiloxane. The influence of the methyldisiloxane chemical structure and of the oxygen/methyldisiloxane feed ratio is investigated in order to provide insights into the organosilicon plasma chemistry at atmospheric pressure. As expected the FT-IR and XPS analyses show that the carbon content of the coatings depends on the number of methyl groups in the precursor molecule; in the case of coatings obtained with PMDSO and TMDSO carbon removal seems to be further enhanced by the presence of Si-H bonds. Gaschromatography-mass spectrometry analyses of the exhaust gas allow to assess the precursor depletion and to perform the quali-quantitative determination of by-products (e.g., silanes, siloxanes, silanols) formed by plasma activation. The results are exploited to rise hypotheses on the contribution of the different reaction pathways on the deposition mechanism.

Insights into the Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition of Thin Films from Methyldisiloxane Precursors

FRACASSI, Francesco
2012-01-01

Abstract

This work describes the plasma-enhanced chemical vapor deposition of thin films at atmospheric pressure using dielectric barrier discharges fed with argon, oxygen and different methyldisiloxanes, i.e., hexamethyldisiloxane, pentamethyldisiloxane, and 1,1,3,3-tetramethyldisiloxane. The influence of the methyldisiloxane chemical structure and of the oxygen/methyldisiloxane feed ratio is investigated in order to provide insights into the organosilicon plasma chemistry at atmospheric pressure. As expected the FT-IR and XPS analyses show that the carbon content of the coatings depends on the number of methyl groups in the precursor molecule; in the case of coatings obtained with PMDSO and TMDSO carbon removal seems to be further enhanced by the presence of Si-H bonds. Gaschromatography-mass spectrometry analyses of the exhaust gas allow to assess the precursor depletion and to perform the quali-quantitative determination of by-products (e.g., silanes, siloxanes, silanols) formed by plasma activation. The results are exploited to rise hypotheses on the contribution of the different reaction pathways on the deposition mechanism.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/33730
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact