Thyroid hormones control both metabolic pathways and body composition, whereas little knowledge is available about the possible influence of skeletal muscle mass (MM) on thyroid hormone metabolism and circulating levels. This was a cross-sectional study conducted at the Population Health Unit of the National Institute of Gastroenterology IRCCS “S. de Bellis” (Italy) and investigating the extent to which skeletal MM affects thyroid function in obesity. Two hundred twenty-seven consecutive healthy volunteers (155 women and 72 men) with overweight and obesity (BMI ≥ 25 kg/m2) and taking no medication or supplement were assessed for hormone, metabolic and routine laboratory parameters. Body composition parameters were collected by using bioelectrical impedance analysis (BIA). MM was directly related to the body mass index (BMI), waist circumference (WC), insulin, triglycerides, uric acid and free-triiodothyronine (FT3) serum levels, FT3 to the free-thyroxine (FT4) ratio, and insulin-resistance (HOMA-IR), and inversely related to age, total, and HDL-cholesterol serum levels. Multiple regression models confirmed the relationship between MM and the FT3 to FT4 ratio, independently of age, BMI, TSH, triglycerides, and insulin serum levels. The same analyses run by gender showed that this relationship maintained significance only in men. Increased skeletal MM in obesity results in improved thyroid activity mediated by increased T4 conversion to T3, and higher FT3 circulating levels, particularly in men. In conclusion, preserving a greater skeletal MM in obesity helps to enhance thyroid activity. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT04327375.

Higher Muscle Mass Implies Increased Free-Thyroxine to Free-Triiodothyronine Ratio in Subjects With Overweight and Obesity

Castellana F.;Sardone R.;Triggiani V.;Di Lorenzo L.;Giannelli G.;De Pergola G.
2020-01-01

Abstract

Thyroid hormones control both metabolic pathways and body composition, whereas little knowledge is available about the possible influence of skeletal muscle mass (MM) on thyroid hormone metabolism and circulating levels. This was a cross-sectional study conducted at the Population Health Unit of the National Institute of Gastroenterology IRCCS “S. de Bellis” (Italy) and investigating the extent to which skeletal MM affects thyroid function in obesity. Two hundred twenty-seven consecutive healthy volunteers (155 women and 72 men) with overweight and obesity (BMI ≥ 25 kg/m2) and taking no medication or supplement were assessed for hormone, metabolic and routine laboratory parameters. Body composition parameters were collected by using bioelectrical impedance analysis (BIA). MM was directly related to the body mass index (BMI), waist circumference (WC), insulin, triglycerides, uric acid and free-triiodothyronine (FT3) serum levels, FT3 to the free-thyroxine (FT4) ratio, and insulin-resistance (HOMA-IR), and inversely related to age, total, and HDL-cholesterol serum levels. Multiple regression models confirmed the relationship between MM and the FT3 to FT4 ratio, independently of age, BMI, TSH, triglycerides, and insulin serum levels. The same analyses run by gender showed that this relationship maintained significance only in men. Increased skeletal MM in obesity results in improved thyroid activity mediated by increased T4 conversion to T3, and higher FT3 circulating levels, particularly in men. In conclusion, preserving a greater skeletal MM in obesity helps to enhance thyroid activity. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT04327375.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/332526
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact