An optical gas sensing technique based on in-plane quartz-enhanced photoacoustic spectroscopy (IP-QEPAS) is reported. In IP-QEPAS, the laser beam is aligned in the plane of the quartz tuning fork (QTF) to increase the interaction area between the acoustic wavefront and the QTF. A custom T-shaped QTF with a prong length of 9.4 mm and a resonance frequency of 9.38 kHz was designed and employed in the IP-QEPAS sensor. For comparison, the traditional QEPAS sensor in which the laser beam is perpendicular to the QTF plane (PP-QEPAS) is investigated with the same operating conditions. Theoretical calculations of strain and displacement of the QTF prong were performed to support the advantage of using the IP-QEPAS technique. By selecting water vapor as the gas target, the IP-QEPAS sensor results in a signal more than 40 times higher than that measured with the PP-QEPAS configuration, confirming the potential of this approach.
In-plane quartz-enhanced photoacoustic spectroscopy
Patimisco P.;
2020-01-01
Abstract
An optical gas sensing technique based on in-plane quartz-enhanced photoacoustic spectroscopy (IP-QEPAS) is reported. In IP-QEPAS, the laser beam is aligned in the plane of the quartz tuning fork (QTF) to increase the interaction area between the acoustic wavefront and the QTF. A custom T-shaped QTF with a prong length of 9.4 mm and a resonance frequency of 9.38 kHz was designed and employed in the IP-QEPAS sensor. For comparison, the traditional QEPAS sensor in which the laser beam is perpendicular to the QTF plane (PP-QEPAS) is investigated with the same operating conditions. Theoretical calculations of strain and displacement of the QTF prong were performed to support the advantage of using the IP-QEPAS technique. By selecting water vapor as the gas target, the IP-QEPAS sensor results in a signal more than 40 times higher than that measured with the PP-QEPAS configuration, confirming the potential of this approach.File | Dimensione | Formato | |
---|---|---|---|
114_In-Plane-QEPAS_APL-2020.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.45 MB
Formato
Adobe PDF
|
1.45 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.