A grooved quartz tuning fork (QTF) with a prong spacing of 800 µm for QEPAS application is reported. The prongs spacing is large enough to facilitate optical alignments when a degraded laser beam is used for QEPAS-based trace gas sensors. The grooved QTF has a resonance frequency of 15.2 kHz at atmospheric pressure and is characterized by four rectangular grooves carved on the QTF prong surfaces. With a grooved-prong, the electrical resistance R of the QTF is reduced resulting in an enhanced piezoelectric signal, while the Q factor is not affected, remaining as high as 15000 at atmospheric pressure. The geometric parameters of the acoustic micro resonators (AmRs) for on-beam QEPAS were optimized to match the grooved QTF, and a signal-to-noise gain factor of ∼ 30 was obtained with an optimum configuration. The performance of the QEPAS-based sensor was demonstrated exploiting an interband cascade laser (ICL) for CH4 detection and a 1σ normalized noise equivalent absorption (NNEA) coefficient of 4.1×10−9 cm−1 W/Hz was obtained at atmospheric pressure.

Piezo-enhanced acoustic detection module for mid-infrared trace gas sensing using a grooved quartz tuning fork

Sampaolo A.;Patimisco P.;Spagnolo V.;
2019-01-01

Abstract

A grooved quartz tuning fork (QTF) with a prong spacing of 800 µm for QEPAS application is reported. The prongs spacing is large enough to facilitate optical alignments when a degraded laser beam is used for QEPAS-based trace gas sensors. The grooved QTF has a resonance frequency of 15.2 kHz at atmospheric pressure and is characterized by four rectangular grooves carved on the QTF prong surfaces. With a grooved-prong, the electrical resistance R of the QTF is reduced resulting in an enhanced piezoelectric signal, while the Q factor is not affected, remaining as high as 15000 at atmospheric pressure. The geometric parameters of the acoustic micro resonators (AmRs) for on-beam QEPAS were optimized to match the grooved QTF, and a signal-to-noise gain factor of ∼ 30 was obtained with an optimum configuration. The performance of the QEPAS-based sensor was demonstrated exploiting an interband cascade laser (ICL) for CH4 detection and a 1σ normalized noise equivalent absorption (NNEA) coefficient of 4.1×10−9 cm−1 W/Hz was obtained at atmospheric pressure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/331687
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 2
social impact