We study existence of radially symmetric solutions for the nonlinear Choquard equation. Using a Lagrange formulation of the problem, we develop new deformation arguments under a version of the Palais-Smale condition introduced in the recent papers by Ikoma and Tanaka and we prove the existence of a ground state solution for the nonlinear Choquard equation with prescribed mass, when $F$ satisfies Berestycki-Lions type conditions.

Ground state solutions for the nonlinear Choquard equation with prescribed mass

Silvia Cingolani
;
2021-01-01

Abstract

We study existence of radially symmetric solutions for the nonlinear Choquard equation. Using a Lagrange formulation of the problem, we develop new deformation arguments under a version of the Palais-Smale condition introduced in the recent papers by Ikoma and Tanaka and we prove the existence of a ground state solution for the nonlinear Choquard equation with prescribed mass, when $F$ satisfies Berestycki-Lions type conditions.
2021
978-3-030-73362-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/318975
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact