Durum wheat is the most relevant cereal for the whole of Mediterranean agriculture, due to its intrinsic adaptation to dryland and semi-arid environments and to its strong historical cultivation tradition. It is not only relevant for the primary production sector, but also for the food industry chains associated with it. In Mediterranean environments, wheat is mostly grown under rainfed conditions and the crop is frequently exposed to environmental stresses, with high temperatures and water scarcity especially during the grain filling period. For these reasons, and due to recurrent disease epidemics, Mediterranean wheat productivity often remains under potential levels. Many studies, using both linkage analysis (LA) and a genome-wide association study (GWAS), have identified the genomic regions controlling the grain yield and the associated markers that can be used for marker-assisted selection (MAS) programs. Here, we have summarized all the current studies identifying quantitative trait loci (QTLs) and/or candidate genes involved in the main traits linked to grain yield: kernel weight, number of kernels per spike and number of spikes per unit area.

Molecular mapping and genomics of grain yield in durum wheat: A review

Marcotuli I.;Gadaleta A.;
2020-01-01

Abstract

Durum wheat is the most relevant cereal for the whole of Mediterranean agriculture, due to its intrinsic adaptation to dryland and semi-arid environments and to its strong historical cultivation tradition. It is not only relevant for the primary production sector, but also for the food industry chains associated with it. In Mediterranean environments, wheat is mostly grown under rainfed conditions and the crop is frequently exposed to environmental stresses, with high temperatures and water scarcity especially during the grain filling period. For these reasons, and due to recurrent disease epidemics, Mediterranean wheat productivity often remains under potential levels. Many studies, using both linkage analysis (LA) and a genome-wide association study (GWAS), have identified the genomic regions controlling the grain yield and the associated markers that can be used for marker-assisted selection (MAS) programs. Here, we have summarized all the current studies identifying quantitative trait loci (QTLs) and/or candidate genes involved in the main traits linked to grain yield: kernel weight, number of kernels per spike and number of spikes per unit area.
File in questo prodotto:
File Dimensione Formato  
ijms-21-07021 (1).pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/316480
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact