We study the dynamical properties of a two-level system in interaction with its environment, whose action on the system is modeled by means of a noise term in the Hamiltonian. We solve the Schrodinger equation, obtain an evolution equation of the Lindblad type for the noise average of the density matrix, and: discuss the results in terms of a "decoherence parameter." Finally, we concentrate our attention on the possibility of hindering the transitions between the two levels in two (apparently unrelated) ways: (a) by increasing the strength of the noise; (b) by a series of frequent measurements. There is an interesting relation between these two situations.
Two-level system with a noisy Hamiltonian
PASCAZIO, Saverio
1999-01-01
Abstract
We study the dynamical properties of a two-level system in interaction with its environment, whose action on the system is modeled by means of a noise term in the Hamiltonian. We solve the Schrodinger equation, obtain an evolution equation of the Lindblad type for the noise average of the density matrix, and: discuss the results in terms of a "decoherence parameter." Finally, we concentrate our attention on the possibility of hindering the transitions between the two levels in two (apparently unrelated) ways: (a) by increasing the strength of the noise; (b) by a series of frequent measurements. There is an interesting relation between these two situations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.