Like many aging humans, the aging chinchilla tends to lose high- frequency sensitivity at a faster rate than low-frequency sensitivity. This feature, combined with its excellent low-frequency hearing, makes the chinchilla attractive as an animal model for studying the relationship between noise-induced hearing loss (NIHL) and age-related hearing loss (AHL). In the present study, we examined susceptibility to noise in 15 aged (10-15 years old) and 15 young chinchillas. Two levels of noise were used, with the aim of determining whether age-related differences exist in the magnitude and rate of recovery from temporary threshold shifts produced by a moderate- level (95 dB) noise exposure, or in susceptibility to permanent threshold shifts and cochlear damage caused by a highlevel (106 dB) noise exposure. Thresholds and response amplitudes at 0.5, 1, 2, 4, 8 and 16 kHz were determined from evoked potentials recorded from the inferior colliculus. Cochlear histology was performed on animals exposed to high-level noise. The results suggest that older animals are equally vulnerable to moderate-level noise, but may be slightly more vulnerable to high-level noise. For moderate- level exposures, there appears to be a simple additive relationship (in dB) between AHL and NIHL. For highlevel exposures, the relationship may be more complex.

Effects of noise on inferior colliculus evoked potentials and cochlear anatomy in young and aged chinchillas

Quaranta N.
1998-01-01

Abstract

Like many aging humans, the aging chinchilla tends to lose high- frequency sensitivity at a faster rate than low-frequency sensitivity. This feature, combined with its excellent low-frequency hearing, makes the chinchilla attractive as an animal model for studying the relationship between noise-induced hearing loss (NIHL) and age-related hearing loss (AHL). In the present study, we examined susceptibility to noise in 15 aged (10-15 years old) and 15 young chinchillas. Two levels of noise were used, with the aim of determining whether age-related differences exist in the magnitude and rate of recovery from temporary threshold shifts produced by a moderate- level (95 dB) noise exposure, or in susceptibility to permanent threshold shifts and cochlear damage caused by a highlevel (106 dB) noise exposure. Thresholds and response amplitudes at 0.5, 1, 2, 4, 8 and 16 kHz were determined from evoked potentials recorded from the inferior colliculus. Cochlear histology was performed on animals exposed to high-level noise. The results suggest that older animals are equally vulnerable to moderate-level noise, but may be slightly more vulnerable to high-level noise. For moderate- level exposures, there appears to be a simple additive relationship (in dB) between AHL and NIHL. For highlevel exposures, the relationship may be more complex.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/315849
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 14
social impact