Larvae of Capnodis tenebrionis (L.) (Coleoptera Buprestidae) feed and develop in roots of stone-fruit trees, thereby decreasing their efficiency, which can lead to plant death. The control of these larvae is critical, due to their localization in the root, and the management of this pest is focused on adults, mainly by using non-specific synthetic insecticides. Less susceptible Prunus rootstocks might be applied as a preventative management of larval infestation by this pest. The current research investigated the susceptibility to C. tenebrionis larvae of the most commonly used rootstocks by combining two bio-assays during two-year trials: development of larvae assayed on semi-artificial substrates containing rootstock bark flour; infestation by neonate larvae on rootstock twigs. The rearing assay on semi-artificial substrates made it possible to distinguish (1) a rootstock cluster (Montclar and GF677) in which larvae developed faster and heavier and produced larger adults, (2) a cluster (Adesoto, CAB6P, Colt and MaxMa60) in which larval growth was less efficient as well as adult size, and (3) a cluster (Garnem and Myrabolan 29C) with intermediate responses in larval development and adult size. The twig infestation assay by neonates showed the most infested (Colt) and least infested (Barrier, MaxMa60 and Marianna 26) rootstocks. When the results of both assays are combined, GF677 and Myrabolan 29C appear more susceptible, while Adesoto and MaxMa60 less susceptible to C. tenebrionis larvae, although Barrier and Marianna 26 require further investigation. The experimental model applied in the current trials can enable processing of a large number of tests on different rootstocks, thereby allowing the accumulation of a large quantity of data on the potential susceptibility of rootstocks. The possibility of rearing larvae on a substrate can allow comparison of additional compounds that could interact with larval growth.
New bioassays reveal susceptibility of stone-fruit rootstocks to capnodis tenebrionis larvae
Laterza I.Membro del Collaboration Group
;Bari G.Membro del Collaboration Group
;Addante R.Membro del Collaboration Group
;Tamburini G.Membro del Collaboration Group
;DE LILLO E.
Membro del Collaboration Group
2020-01-01
Abstract
Larvae of Capnodis tenebrionis (L.) (Coleoptera Buprestidae) feed and develop in roots of stone-fruit trees, thereby decreasing their efficiency, which can lead to plant death. The control of these larvae is critical, due to their localization in the root, and the management of this pest is focused on adults, mainly by using non-specific synthetic insecticides. Less susceptible Prunus rootstocks might be applied as a preventative management of larval infestation by this pest. The current research investigated the susceptibility to C. tenebrionis larvae of the most commonly used rootstocks by combining two bio-assays during two-year trials: development of larvae assayed on semi-artificial substrates containing rootstock bark flour; infestation by neonate larvae on rootstock twigs. The rearing assay on semi-artificial substrates made it possible to distinguish (1) a rootstock cluster (Montclar and GF677) in which larvae developed faster and heavier and produced larger adults, (2) a cluster (Adesoto, CAB6P, Colt and MaxMa60) in which larval growth was less efficient as well as adult size, and (3) a cluster (Garnem and Myrabolan 29C) with intermediate responses in larval development and adult size. The twig infestation assay by neonates showed the most infested (Colt) and least infested (Barrier, MaxMa60 and Marianna 26) rootstocks. When the results of both assays are combined, GF677 and Myrabolan 29C appear more susceptible, while Adesoto and MaxMa60 less susceptible to C. tenebrionis larvae, although Barrier and Marianna 26 require further investigation. The experimental model applied in the current trials can enable processing of a large number of tests on different rootstocks, thereby allowing the accumulation of a large quantity of data on the potential susceptibility of rootstocks. The possibility of rearing larvae on a substrate can allow comparison of additional compounds that could interact with larval growth.File | Dimensione | Formato | |
---|---|---|---|
Kokici et al_2020-vol73-2020-257-263.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.54 MB
Formato
Adobe PDF
|
1.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.