In this paper, we discuss a test function method to obtain nonexistence of global-in-time solutions for higher order evolution equations with fractional derivatives and a power nonlinearity, under a sign condition on the initial data. In order to deal with fractional powers of the Laplace operator, we introduce a suitable test function and a suitable class of weak solutions. The optimality of the nonexistence result provided is guaranteed by both scaling arguments and counterexamples. In particular, our manuscript provides the counterpart of nonexistence for several recent results of global-in-time existence of small data solutions to the following problem: utt+(−Δ)θut+(−Δ)σu=f(u,ut),t>0,x∈Rn,u(0,x)=u0(x),ut(0,x)=u1(x),with f=|u|p or f=|ut|p, where θ≥0 and σ>0 are fractional powers.

A test function method for evolution equations with fractional powers of the Laplace operator

D'Abbicco M.
;
2021-01-01

Abstract

In this paper, we discuss a test function method to obtain nonexistence of global-in-time solutions for higher order evolution equations with fractional derivatives and a power nonlinearity, under a sign condition on the initial data. In order to deal with fractional powers of the Laplace operator, we introduce a suitable test function and a suitable class of weak solutions. The optimality of the nonexistence result provided is guaranteed by both scaling arguments and counterexamples. In particular, our manuscript provides the counterpart of nonexistence for several recent results of global-in-time existence of small data solutions to the following problem: utt+(−Δ)θut+(−Δ)σu=f(u,ut),t>0,x∈Rn,u(0,x)=u0(x),ut(0,x)=u1(x),with f=|u|p or f=|ut|p, where θ≥0 and σ>0 are fractional powers.
File in questo prodotto:
File Dimensione Formato  
DAbbicco Fujiwara 2021 Nonlinear Anal.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 924.57 kB
Formato Adobe PDF
924.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2021 DAbbicco Fujiwara Postprint.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 270.5 kB
Formato Adobe PDF
270.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/313275
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact