In this paper, we discuss a test function method to obtain nonexistence of global-in-time solutions for higher order evolution equations with fractional derivatives and a power nonlinearity, under a sign condition on the initial data. In order to deal with fractional powers of the Laplace operator, we introduce a suitable test function and a suitable class of weak solutions. The optimality of the nonexistence result provided is guaranteed by both scaling arguments and counterexamples. In particular, our manuscript provides the counterpart of nonexistence for several recent results of global-in-time existence of small data solutions to the following problem: utt+(−Δ)θut+(−Δ)σu=f(u,ut),t>0,x∈Rn,u(0,x)=u0(x),ut(0,x)=u1(x),with f=|u|p or f=|ut|p, where θ≥0 and σ>0 are fractional powers.

A test function method for evolution equations with fractional powers of the Laplace operator

D'Abbicco M.
;
2021-01-01

Abstract

In this paper, we discuss a test function method to obtain nonexistence of global-in-time solutions for higher order evolution equations with fractional derivatives and a power nonlinearity, under a sign condition on the initial data. In order to deal with fractional powers of the Laplace operator, we introduce a suitable test function and a suitable class of weak solutions. The optimality of the nonexistence result provided is guaranteed by both scaling arguments and counterexamples. In particular, our manuscript provides the counterpart of nonexistence for several recent results of global-in-time existence of small data solutions to the following problem: utt+(−Δ)θut+(−Δ)σu=f(u,ut),t>0,x∈Rn,u(0,x)=u0(x),ut(0,x)=u1(x),with f=|u|p or f=|ut|p, where θ≥0 and σ>0 are fractional powers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/313275
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact