In this paper we study the asymptotic profile (as~$t oinfty$) of the solution to the Cauchy problem for the linear plate equation % [ u_{tt}+Delta^2 u - lambda(t)Delta u + u_t =0 ] % when~$lambda=lambda(t)$ is a decreasing function, assuming initial data in the energy space and verifying a moment condition. For sufficiently small data, we find the critical exponent for global solutions to the corresponding problem with power nonlinearity % [ u_{tt}+Delta^2 u - lambda(t)Delta u + u_t =|u|^p. ] % In order to do that, we assume small data in the energy space and, possibly, in~$L^1$. In this latter case, we also determinate the asymptotic profile of the solution to the semilinear problem for supercritical power nonlinearities.

Asymptotic profiles and critical exponents for a semilinear damped plate equation with time-dependent coefficients

D’Abbicco, Marcello
;
2021-01-01

Abstract

In this paper we study the asymptotic profile (as~$t oinfty$) of the solution to the Cauchy problem for the linear plate equation % [ u_{tt}+Delta^2 u - lambda(t)Delta u + u_t =0 ] % when~$lambda=lambda(t)$ is a decreasing function, assuming initial data in the energy space and verifying a moment condition. For sufficiently small data, we find the critical exponent for global solutions to the corresponding problem with power nonlinearity % [ u_{tt}+Delta^2 u - lambda(t)Delta u + u_t =|u|^p. ] % In order to do that, we assume small data in the energy space and, possibly, in~$L^1$. In this latter case, we also determinate the asymptotic profile of the solution to the semilinear problem for supercritical power nonlinearities.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/313273
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact