The Jiangmen Underground Neutrino Observatory (JUNO) project aims at probing, at the same time, the two main frequencies of three-flavor neutrino oscillations, as well as their interference related to the mass ordering (normal or inverted), at a distance of similar to 53 km from two powerful reactor complexes in China, at Yangjiang and Taishan. In the latter complex, the unoscillated spectrum from one reactor core is planned to be closely monitored by the Taishan Antineutrino Observatory (TAO), expected to have better resolution (x1/2) and higher statistics (x30) than JUNO. In the context of v energy spectra endowed with fine-structure features from summation calculations, we analyze in detail the effects of energy resolution and nucleon recoil on observable event spectra. We show that a model spectrum in TAO can be mapped into a corresponding spectrum in JUNO through appropriate convolutions. The mapping is exact in the hypothetical case without oscillations and holds to a very good accuracy in the real case with oscillations. We then analyze the sensitivity to mass ordering of JUNO (and its precision oscillometry capabilities) assuming a single reference spectrum, as well as bundles of variant spectra, as obtained by changing nuclear input uncertainties in summation calculations from a publicly available toolkit. We show through an chi(2) analysis that variant spectra induce little reduction of the sensitivity in JUNO, especially when TAO constraints are included. Subtle aspects of the statistical analysis of variant spectra are also discussed.

Mapping reactor neutrino spectra from TAO to JUNO

Capozzi, F;Lisi, E;Marrone, A
2020-01-01

Abstract

The Jiangmen Underground Neutrino Observatory (JUNO) project aims at probing, at the same time, the two main frequencies of three-flavor neutrino oscillations, as well as their interference related to the mass ordering (normal or inverted), at a distance of similar to 53 km from two powerful reactor complexes in China, at Yangjiang and Taishan. In the latter complex, the unoscillated spectrum from one reactor core is planned to be closely monitored by the Taishan Antineutrino Observatory (TAO), expected to have better resolution (x1/2) and higher statistics (x30) than JUNO. In the context of v energy spectra endowed with fine-structure features from summation calculations, we analyze in detail the effects of energy resolution and nucleon recoil on observable event spectra. We show that a model spectrum in TAO can be mapped into a corresponding spectrum in JUNO through appropriate convolutions. The mapping is exact in the hypothetical case without oscillations and holds to a very good accuracy in the real case with oscillations. We then analyze the sensitivity to mass ordering of JUNO (and its precision oscillometry capabilities) assuming a single reference spectrum, as well as bundles of variant spectra, as obtained by changing nuclear input uncertainties in summation calculations from a publicly available toolkit. We show through an chi(2) analysis that variant spectra induce little reduction of the sensitivity in JUNO, especially when TAO constraints are included. Subtle aspects of the statistical analysis of variant spectra are also discussed.
File in questo prodotto:
File Dimensione Formato  
scoap3-fulltext-2.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/312195
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact