We prove a strict relation between the Gelfand–Kirillov (GK) dimension of the relatively free (graded) algebra of a PI-algebra and its (graded) exponent. As a consequence we show a Bahturin–Zaicev type result relating the GK dimension of the relatively free algebra of a graded PI-algebra and the one of its neutral part. We also get that the growth of the relatively free graded algebra of a matrix algebra is maximal when the grading is fine. Finally we compute the graded GK dimension of the matrix algebra with any grading and the graded GK dimension of any verbally prime algebra endowed with an elementary grading.

The GK dimension of relatively free algebras of PI-algebras

Centrone L.
2019-01-01

Abstract

We prove a strict relation between the Gelfand–Kirillov (GK) dimension of the relatively free (graded) algebra of a PI-algebra and its (graded) exponent. As a consequence we show a Bahturin–Zaicev type result relating the GK dimension of the relatively free algebra of a graded PI-algebra and the one of its neutral part. We also get that the growth of the relatively free graded algebra of a matrix algebra is maximal when the grading is fine. Finally we compute the graded GK dimension of the matrix algebra with any grading and the graded GK dimension of any verbally prime algebra endowed with an elementary grading.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/312135
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact