Let E be the infinite dimensional Grassmann algebra over an infinite field of characteristic p different from 2. Given an involution φ on E, denote by Id(E,φ) and C(E,φ) the set of all ⁎-polynomial identities and ⁎-central polynomials of (E,φ) respectively. In this paper we describe Id(E,φ) and C(E,φ). Moreover, we prove that C(E,φ) is not finitely generated as a T(⁎)-space if p>2.

Identities and central polynomials with involution for the Grassmann algebra

Centrone L.
;
2020-01-01

Abstract

Let E be the infinite dimensional Grassmann algebra over an infinite field of characteristic p different from 2. Given an involution φ on E, denote by Id(E,φ) and C(E,φ) the set of all ⁎-polynomial identities and ⁎-central polynomials of (E,φ) respectively. In this paper we describe Id(E,φ) and C(E,φ). Moreover, we prove that C(E,φ) is not finitely generated as a T(⁎)-space if p>2.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/312133
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact