Let F be a field containing a primitive m-th root of the unit. We characterize the actions of a Taft's algebra Hm of a certain order m on finite dimensional arbitrary algebras. We describe the action in terms of gradings and actions by skew-derivations. Moreover we prove the associative algebra UT2 of 2×2 upper triangular matrices with entries from F does not generate a variety of Hm-module algebras of almost polynomial growth.
Actions of Taft's algebras on finite dimensional algebras
Centrone L.
;
2020-01-01
Abstract
Let F be a field containing a primitive m-th root of the unit. We characterize the actions of a Taft's algebra Hm of a certain order m on finite dimensional arbitrary algebras. We describe the action in terms of gradings and actions by skew-derivations. Moreover we prove the associative algebra UT2 of 2×2 upper triangular matrices with entries from F does not generate a variety of Hm-module algebras of almost polynomial growth.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
action of Taft_s algebra.pdf
accesso aperto
Descrizione: Articolo in rivista
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
423.39 kB
Formato
Adobe PDF
|
423.39 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.