Let F be a field containing a primitive m-th root of the unit. We characterize the actions of a Taft's algebra Hm of a certain order m on finite dimensional arbitrary algebras. We describe the action in terms of gradings and actions by skew-derivations. Moreover we prove the associative algebra UT2 of 2×2 upper triangular matrices with entries from F does not generate a variety of Hm-module algebras of almost polynomial growth.

Actions of Taft's algebras on finite dimensional algebras

Centrone L.
;
2020-01-01

Abstract

Let F be a field containing a primitive m-th root of the unit. We characterize the actions of a Taft's algebra Hm of a certain order m on finite dimensional arbitrary algebras. We describe the action in terms of gradings and actions by skew-derivations. Moreover we prove the associative algebra UT2 of 2×2 upper triangular matrices with entries from F does not generate a variety of Hm-module algebras of almost polynomial growth.
File in questo prodotto:
File Dimensione Formato  
action of Taft_s algebra.pdf

accesso aperto

Descrizione: Articolo in rivista
Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 423.39 kB
Formato Adobe PDF
423.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/312131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact