The presence of pharmaceutical compounds (PhCs) in the effluents of wastewater treatment plants (WWTPs) is an ecological concern. The issue could be alleviated by trapping those substances by cyclodextrin (CD) polymers or photolyzing them by pulsed light (PL). Consequently, a sequential CD polymer/PL system was tested for the removal of PhCs. Firstly, a survey detected the presence of recurrent PhCs in the effluents of local WWTPs. Then, pure water was spiked with 21 PhCs, 100 μg/L each one. The three-dimensional network provides amphiphilic features to the CD polymer that reduced the pollutant concentration by 77 %. Sorption involves a plead of physical and chemical mechanisms hindering the establishment of a general removal model for all compounds. The performed simulations hint that the retention capacity mainly correlates with the computed binding energies, so that theoretical models are revealed as valuable tools for further improvements. The complementary action of PL rose the elimination to 91 %. The polymer can be reused at least 10 times for ibuprofen (model compound) removal, and was able to eliminate the ecotoxicity of an ibuprofen solution. Therefore, this novel sequential CD polymer/PL process seems to be an efficient alternative to eliminate PhCs from wastewater.

Removal and toxicity evaluation of a diverse group of drugs from water by a cyclodextrin polymer/pulsed light system

P. Fini;P. Cosma;
2021

Abstract

The presence of pharmaceutical compounds (PhCs) in the effluents of wastewater treatment plants (WWTPs) is an ecological concern. The issue could be alleviated by trapping those substances by cyclodextrin (CD) polymers or photolyzing them by pulsed light (PL). Consequently, a sequential CD polymer/PL system was tested for the removal of PhCs. Firstly, a survey detected the presence of recurrent PhCs in the effluents of local WWTPs. Then, pure water was spiked with 21 PhCs, 100 μg/L each one. The three-dimensional network provides amphiphilic features to the CD polymer that reduced the pollutant concentration by 77 %. Sorption involves a plead of physical and chemical mechanisms hindering the establishment of a general removal model for all compounds. The performed simulations hint that the retention capacity mainly correlates with the computed binding energies, so that theoretical models are revealed as valuable tools for further improvements. The complementary action of PL rose the elimination to 91 %. The polymer can be reused at least 10 times for ibuprofen (model compound) removal, and was able to eliminate the ecotoxicity of an ibuprofen solution. Therefore, this novel sequential CD polymer/PL process seems to be an efficient alternative to eliminate PhCs from wastewater.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/312012
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact