Spirulina microalga (Arthrospira platensis) is an interesting phototrophic organism because of its high content of nutrients including proteins, lipids, essential amino acids, antioxidants, vitamins, polysaccharides, and minerals. Hydrophilic interaction liquid chromatography (HILIC) coupled to linear ion trap (LIT) and Orbitrap Fourier transform mass spectrometry (FTMS) via ESI was employed for the separation and characterization of lipid species in A. platensis. Inositolphosphoceramides (IPC) are minor but important constituents of spirulina; their investigation was accomplished by HILIC–ESI–MS including collision-induced dissociation (MS2, MS3) of deprotonated molecules in the LIT analyzer and a schematic fragmentation pattern is described. All four commercial spirulina samples revealed the occurrence of the same IPC species at m/z 796.6 (d18:0/16:0;1), 810.6 (d18:0/17:0;1), 824.6 (d18:0/18:0;1), and 826.6 (d18:0/17:0;2) but in diverse relative abundance. This study sets the stage for future investigations on IPC in other algae and microalgae.

The occurrence of inositolphosphoceramides in spirulina microalgae

Calvano C. D.;Coniglio D.;Losito I.;Cataldi T. R. I.
2020-01-01

Abstract

Spirulina microalga (Arthrospira platensis) is an interesting phototrophic organism because of its high content of nutrients including proteins, lipids, essential amino acids, antioxidants, vitamins, polysaccharides, and minerals. Hydrophilic interaction liquid chromatography (HILIC) coupled to linear ion trap (LIT) and Orbitrap Fourier transform mass spectrometry (FTMS) via ESI was employed for the separation and characterization of lipid species in A. platensis. Inositolphosphoceramides (IPC) are minor but important constituents of spirulina; their investigation was accomplished by HILIC–ESI–MS including collision-induced dissociation (MS2, MS3) of deprotonated molecules in the LIT analyzer and a schematic fragmentation pattern is described. All four commercial spirulina samples revealed the occurrence of the same IPC species at m/z 796.6 (d18:0/16:0;1), 810.6 (d18:0/17:0;1), 824.6 (d18:0/18:0;1), and 826.6 (d18:0/17:0;2) but in diverse relative abundance. This study sets the stage for future investigations on IPC in other algae and microalgae.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/311943
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact