The chemical identity of arsenosugar phospholipids (As-PL) as mono- (i.e., lyso, L-As-PL) and diacyl-arsenosugar PL in four edible and common marine alga samples, such as nori (Porphyra spp.), wakame (Undaria pinnatifida), dulse (Palmaria palmata), and kombu (Saccharina japonica), was successfully investigated. Adopting negative polarity electrospray ionization (ESI), not common for As-PL, conjugated with hydrophilic interaction liquid chromatography (HILIC) and mass spectrometry (MS), performed either at low resolution using a linear ion trap (LIT) with sequential MSn (n = 2, 3) or at high resolution using a high-resolution/high-accuracy Fourier-transform MS (FTMS), based on an orbital trap instrument, more than 20 As-PL and 2 L-As-PL species were identified. The absence of As-PL standard compounds encouraged us to generate an in-house-built database of As-PL/L-As-PL for a rapid and simple classification. Despite their compositional diversity, tandem MS of deprotonated As-PL and L-As-PL ([M - H]-) demonstrated the occurrence of a highly diagnostic product ion at m/z 389.0 ([AsC10H19O9P]-). The fatty acid composition and distribution of As-PL were easily assigned on the basis of the ratio intensity between sn-1 and sn-2 product ions. Indeed, the preferential formation of [R1C3H5O4P]- ions over [R2C3H5O4P]- ions, both containing the glycerol backbone, enabled the regiochemical assignment of As-PL. These outcomes were confirmed by MSn (n = 2, 3) analyses and using sn-1- and sn-2-regioselective hydrolase enzymes (i.e., phospholipases A1 and A2). The predominant As-PL's in samples of nori (red alga), wakame, and kombu (both brown algae) were identified as containing palmitic acyl chains (i.e., As-PL958 (As-PL 16:0/16:0) with ca. 66 ± 3, 82 ± 4, and 58 ± 3% as relative abundances, respectively), while the main species in dulse (red alga) samples was As-PL982 (As-PL 18:1/16:1) at ca. 38 ± 3%.
Arsenosugar Phospholipids (As-PL) in Edible Marine Algae: An Interplay between Liquid Chromatography with Electrospray Ionization Multistage Mass Spectrometry and Phospholipases A1 and A2 for Regiochemical Assignment
Coniglio D.;Calvano C. D.;Ventura G.;Losito I.;Cataldi T. R. I.
2020-01-01
Abstract
The chemical identity of arsenosugar phospholipids (As-PL) as mono- (i.e., lyso, L-As-PL) and diacyl-arsenosugar PL in four edible and common marine alga samples, such as nori (Porphyra spp.), wakame (Undaria pinnatifida), dulse (Palmaria palmata), and kombu (Saccharina japonica), was successfully investigated. Adopting negative polarity electrospray ionization (ESI), not common for As-PL, conjugated with hydrophilic interaction liquid chromatography (HILIC) and mass spectrometry (MS), performed either at low resolution using a linear ion trap (LIT) with sequential MSn (n = 2, 3) or at high resolution using a high-resolution/high-accuracy Fourier-transform MS (FTMS), based on an orbital trap instrument, more than 20 As-PL and 2 L-As-PL species were identified. The absence of As-PL standard compounds encouraged us to generate an in-house-built database of As-PL/L-As-PL for a rapid and simple classification. Despite their compositional diversity, tandem MS of deprotonated As-PL and L-As-PL ([M - H]-) demonstrated the occurrence of a highly diagnostic product ion at m/z 389.0 ([AsC10H19O9P]-). The fatty acid composition and distribution of As-PL were easily assigned on the basis of the ratio intensity between sn-1 and sn-2 product ions. Indeed, the preferential formation of [R1C3H5O4P]- ions over [R2C3H5O4P]- ions, both containing the glycerol backbone, enabled the regiochemical assignment of As-PL. These outcomes were confirmed by MSn (n = 2, 3) analyses and using sn-1- and sn-2-regioselective hydrolase enzymes (i.e., phospholipases A1 and A2). The predominant As-PL's in samples of nori (red alga), wakame, and kombu (both brown algae) were identified as containing palmitic acyl chains (i.e., As-PL958 (As-PL 16:0/16:0) with ca. 66 ± 3, 82 ± 4, and 58 ± 3% as relative abundances, respectively), while the main species in dulse (red alga) samples was As-PL982 (As-PL 18:1/16:1) at ca. 38 ± 3%.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.