This work aims to the synthesis of novel carboxylated chitosan-dopamine (DA) and -tyrosine (Tyr) conjugates as systems for improving the brain delivery of the neurotransmitter DA following nasal administration. For this purpose, ester or amide conjugates were synthesized by N,N-dicyclohexylcarbodiimide (DCC) mediated coupling reactions between the appropriate N-tert-butyloxycarbonyl (Boc) protected starting polymers N,O-carboxymethyl chitosan and 6-carboxy chitosan and DA or O-tert-Butyl-L-tyrosine-tert-butyl ester hydrochloride. The resulting conjugates were characterized by FT-IR and 1H- and 13C-NMR spectroscopies and their in vitro mucoadhesive properties in simulated nasal fluid (SNF), toxicity and uptake from Olfactory Ensheathing Cells (OECs) were assessed. Results demonstrated that N,O-carboxymethyl chitosan-DA conjugate was the most mucoadhesive polymer in the series examined and, together with the 6-carboxy chitosan-DA-conjugate were able to release the neurotransmitter in SNF. The MTT assay showed that the starting polymers as well as all the prepared conjugates in OECs resulted not toxic at any concentration tested. Likewise, the three synthesized conjugates were not cytotoxic as well. Cytofluorimetric analysis revealed that the N,O-carboxymethyl chitosan DA conjugate was internalized by OECs in a superior manner at 24 h as compared with the starting polymer. Overall, the N,O-CMCS-DA conjugate seems promising for improving the delivery of DA by nose-to-brain administration.
Synthesis and characterization of novel chitosan-dopamine or chitosan-tyrosine conjugates for potential nose-to-brain delivery
Adriana Trapani;Delia Mandracchia;
2020-01-01
Abstract
This work aims to the synthesis of novel carboxylated chitosan-dopamine (DA) and -tyrosine (Tyr) conjugates as systems for improving the brain delivery of the neurotransmitter DA following nasal administration. For this purpose, ester or amide conjugates were synthesized by N,N-dicyclohexylcarbodiimide (DCC) mediated coupling reactions between the appropriate N-tert-butyloxycarbonyl (Boc) protected starting polymers N,O-carboxymethyl chitosan and 6-carboxy chitosan and DA or O-tert-Butyl-L-tyrosine-tert-butyl ester hydrochloride. The resulting conjugates were characterized by FT-IR and 1H- and 13C-NMR spectroscopies and their in vitro mucoadhesive properties in simulated nasal fluid (SNF), toxicity and uptake from Olfactory Ensheathing Cells (OECs) were assessed. Results demonstrated that N,O-carboxymethyl chitosan-DA conjugate was the most mucoadhesive polymer in the series examined and, together with the 6-carboxy chitosan-DA-conjugate were able to release the neurotransmitter in SNF. The MTT assay showed that the starting polymers as well as all the prepared conjugates in OECs resulted not toxic at any concentration tested. Likewise, the three synthesized conjugates were not cytotoxic as well. Cytofluorimetric analysis revealed that the N,O-carboxymethyl chitosan DA conjugate was internalized by OECs in a superior manner at 24 h as compared with the starting polymer. Overall, the N,O-CMCS-DA conjugate seems promising for improving the delivery of DA by nose-to-brain administration.File | Dimensione | Formato | |
---|---|---|---|
2020 IJP.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.51 MB
Formato
Adobe PDF
|
3.51 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2020 IJP Trapani post cj post print.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
2.42 MB
Formato
Adobe PDF
|
2.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.