Here we summarize the main results of our latest investigation on the spontaneous encapsulation of proteins (ferritin) and ribosomes inside lipid vesicles. We show that when vesicles form in a solution containing some macromolecules (even at low concentration), in contrast to the expectations, a few but measurable number of vesicles is able to capture a very high number of solutes, up to 60 times the external concentration. We also show preliminary evidences on the encapsulation of additional solutes (ribo-peptidic complexes, fluorescent proteins and enzymes), and shortly present our current approach aimed at exploiting this phenomenon. In particular, we would like to reveal how the formation of compartments can trigger effective intra-vesicle reactions starting from diluted solutions. Although the mechanistic details for this phenomenon are still missing, we claim that these new evidences are highly relevant for the origin of the first functional cells in primitive times. © 2012 Springer Science+Business Media Dordrecht.
Encapsulation of Ferritin, Ribosomes, and Ribo-Peptidic Complexes Inside Liposomes: Insights Into the Origin of Metabolism
Altamura E.;
2012-01-01
Abstract
Here we summarize the main results of our latest investigation on the spontaneous encapsulation of proteins (ferritin) and ribosomes inside lipid vesicles. We show that when vesicles form in a solution containing some macromolecules (even at low concentration), in contrast to the expectations, a few but measurable number of vesicles is able to capture a very high number of solutes, up to 60 times the external concentration. We also show preliminary evidences on the encapsulation of additional solutes (ribo-peptidic complexes, fluorescent proteins and enzymes), and shortly present our current approach aimed at exploiting this phenomenon. In particular, we would like to reveal how the formation of compartments can trigger effective intra-vesicle reactions starting from diluted solutions. Although the mechanistic details for this phenomenon are still missing, we claim that these new evidences are highly relevant for the origin of the first functional cells in primitive times. © 2012 Springer Science+Business Media Dordrecht.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.