In this article, we present HealthAssistantBot, an intelligent virtual assistant able to talk with patients in order to understand their symptomatology, suggest doctors, and monitor treatments and health parameters. In a simple way, by exploiting a natural language-based interaction, the system allows the user to create her health profile, to describe her symptoms, to search for doctors or to simply remember a treatment to follow. Specifically, our methodology exploits machine learning techniques to process users symptoms and to automatically infer her diseases. Next, the information obtained is used by our recommendation algorithm to identify the nearest doctor who can best treat the user's condition, considering the community data. In the experimental session we evaluated our HealthAssistantBot with both an offline and online evaluation. In the first case, we assessed the performance of our internal components, while in the second one we carried out a study involving 102 subjects who interacted with the conversational agent in a daily use scenario. Results are encouraging and showed the effectiveness of the strategy in supporting the patients in taking care of their health.
HealthAssistantBot: A Personal Health Assistant for the Italian Language
Polignano M.;Iovine A.;Musto C.;De Gemmis M.;Semeraro G.
2020-01-01
Abstract
In this article, we present HealthAssistantBot, an intelligent virtual assistant able to talk with patients in order to understand their symptomatology, suggest doctors, and monitor treatments and health parameters. In a simple way, by exploiting a natural language-based interaction, the system allows the user to create her health profile, to describe her symptoms, to search for doctors or to simply remember a treatment to follow. Specifically, our methodology exploits machine learning techniques to process users symptoms and to automatically infer her diseases. Next, the information obtained is used by our recommendation algorithm to identify the nearest doctor who can best treat the user's condition, considering the community data. In the experimental session we evaluated our HealthAssistantBot with both an offline and online evaluation. In the first case, we assessed the performance of our internal components, while in the second one we carried out a study involving 102 subjects who interacted with the conversational agent in a daily use scenario. Results are encouraging and showed the effectiveness of the strategy in supporting the patients in taking care of their health.File | Dimensione | Formato | |
---|---|---|---|
09110847 (1).pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
2.43 MB
Formato
Adobe PDF
|
2.43 MB | Adobe PDF | Visualizza/Apri |
ACCESS3000815-2.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
2.44 MB
Formato
Adobe PDF
|
2.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.