We present an explicit construction of minimal cellular resolutions for the edge ideals of forests, based on discrete Morse theory. In particular, the generators of the free modules are subsets of the generators of the modules in the Lyubeznik resolution. This procedure allows us to ease the computation of the graded Betti numbers and the projective dimension.
Minimal Cellular Resolutions of the Edge Ideals of Forests
Margherita Barile;Antonio Macchia
2020-01-01
Abstract
We present an explicit construction of minimal cellular resolutions for the edge ideals of forests, based on discrete Morse theory. In particular, the generators of the free modules are subsets of the generators of the modules in the Lyubeznik resolution. This procedure allows us to ease the computation of the graded Betti numbers and the projective dimension.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
8810-PDF file-32145-2-10-20200526.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
307.11 kB
Formato
Adobe PDF
|
307.11 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.