We present an explicit construction of minimal cellular resolutions for the edge ideals of forests, based on discrete Morse theory. In particular, the generators of the free modules are subsets of the generators of the modules in the Lyubeznik resolution. This procedure allows us to ease the computation of the graded Betti numbers and the projective dimension.

Minimal Cellular Resolutions of the Edge Ideals of Forests

Margherita Barile;Antonio Macchia
2020-01-01

Abstract

We present an explicit construction of minimal cellular resolutions for the edge ideals of forests, based on discrete Morse theory. In particular, the generators of the free modules are subsets of the generators of the modules in the Lyubeznik resolution. This procedure allows us to ease the computation of the graded Betti numbers and the projective dimension.
File in questo prodotto:
File Dimensione Formato  
8810-PDF file-32145-2-10-20200526.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 307.11 kB
Formato Adobe PDF
307.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/301231
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact