Background: The use of gold nanoparticles in medicine and especially in cancer treatment has been of interest to researchers. The effectiveness of this nanoparticle on cells significantly depends on the amount of its entry into the cells. This study was performed to compare the rate and mechanism of effect of gold nanoparticles coated with different amino acid on PC12 cancer cell line. Materials and Methods: The PC12 cells line were exposed to various concentrations of amino acid coated and uncoated gold nanoparticles (0.5, 2.5 and 5 mu M). Cell death rate was determined according to level of Lactate dehydrogenase (LDH) release from cells and MTT assay. In addition cell morphology and the amount of Cellular Reactive oxygen species (ROS) were studied. Results: The uncoated gold nanoparticles have shown minor effects on cellular life. Gold nanoparticles coated by tryptophan at high concentrations (2.5, 5 and 25 mu M) increase in cancer cells metabolic activity. Gold nanoparticles coated by Aspartate also produce the largest amount of LDH and ROS in cancer cells and therefore caused of highest rate of apoptosis. Conclusion: The results showed that the nanoparticles coated with amino acids are affected on cellular metabolism and apoptosis more than uncoated nanoparticles. Also the smallest coated nanoparticles (coated by aspartate) have the most influence and by increasing the size, this effect was reduced.

Cytotoxic Effects of Coated Gold Nanoparticles on PC12 Cancer Cell

H jahantigh;
2018-01-01

Abstract

Background: The use of gold nanoparticles in medicine and especially in cancer treatment has been of interest to researchers. The effectiveness of this nanoparticle on cells significantly depends on the amount of its entry into the cells. This study was performed to compare the rate and mechanism of effect of gold nanoparticles coated with different amino acid on PC12 cancer cell line. Materials and Methods: The PC12 cells line were exposed to various concentrations of amino acid coated and uncoated gold nanoparticles (0.5, 2.5 and 5 mu M). Cell death rate was determined according to level of Lactate dehydrogenase (LDH) release from cells and MTT assay. In addition cell morphology and the amount of Cellular Reactive oxygen species (ROS) were studied. Results: The uncoated gold nanoparticles have shown minor effects on cellular life. Gold nanoparticles coated by tryptophan at high concentrations (2.5, 5 and 25 mu M) increase in cancer cells metabolic activity. Gold nanoparticles coated by Aspartate also produce the largest amount of LDH and ROS in cancer cells and therefore caused of highest rate of apoptosis. Conclusion: The results showed that the nanoparticles coated with amino acids are affected on cellular metabolism and apoptosis more than uncoated nanoparticles. Also the smallest coated nanoparticles (coated by aspartate) have the most influence and by increasing the size, this effect was reduced.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/300389
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 8
social impact