We prove comparison principles, uniqueness, regularity and symmetry results for p-regular distributional solutions of quasilinear very weak elliptic equations of coercive type and to related inequalities. The simplest model examples are -Δ_pu+|u|^(q-1)u=h on R^N, where q>p-1>0 and -div( abla u/sqrt(1+| abla u|^2)+|u|^(q-1)u=h on ℝN, with q>0 and h∈L^1_loc(R^N).

Comparison principles, uniqueness and symmetry results of solutions of quasilinear elliptic equations and inequalities

D'AMBROSIO, Lorenzo;
2013-01-01

Abstract

We prove comparison principles, uniqueness, regularity and symmetry results for p-regular distributional solutions of quasilinear very weak elliptic equations of coercive type and to related inequalities. The simplest model examples are -Δ_pu+|u|^(q-1)u=h on R^N, where q>p-1>0 and -div( abla u/sqrt(1+| abla u|^2)+|u|^(q-1)u=h on ℝN, with q>0 and h∈L^1_loc(R^N).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/29727
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact