In this paper the performances of two spectrophones for quartz-enhanced photoacoustic spectroscopy (QEPAS)-based ethane gas sensing were tested and compared. Each spectrophone contains a quartz tuning fork (QTF) acoustically coupled with a pair of micro-resonator tubes and having a fundamental mode resonance frequency of 32.7 kHz (standard QTF) and 12.4 kHz (custom QTF), respectively. The spectrophones were implemented into a QEPAS acoustic detection module (ADM) together with a preamplifier having a gain bandwidth optimized for the respective QTF resonance frequency. Each ADM was tested for ethane QEPAS sensing, employing a custom pigtailed laser diode emitting at ~1684 nm as the exciting light source. By flowing 1% ethane at atmospheric pressure, a signal-to-noise ratio of 453.2 was measured by implementing the 12.4 kHz QTF-based ADM, ~3.3 times greater than the value obtained using a standard QTF. The minimum ethane concentration detectable using a 100 ms lock-in integration time achieving the 12.4 kHz custom QTF was 22 ppm.

Quartz-enhanced photoacoustic detection of ethane in the near-IR exploiting a highly performant spectrophone

Patimisco P.;Ranieri E.;Spagnolo V.
2020

Abstract

In this paper the performances of two spectrophones for quartz-enhanced photoacoustic spectroscopy (QEPAS)-based ethane gas sensing were tested and compared. Each spectrophone contains a quartz tuning fork (QTF) acoustically coupled with a pair of micro-resonator tubes and having a fundamental mode resonance frequency of 32.7 kHz (standard QTF) and 12.4 kHz (custom QTF), respectively. The spectrophones were implemented into a QEPAS acoustic detection module (ADM) together with a preamplifier having a gain bandwidth optimized for the respective QTF resonance frequency. Each ADM was tested for ethane QEPAS sensing, employing a custom pigtailed laser diode emitting at ~1684 nm as the exciting light source. By flowing 1% ethane at atmospheric pressure, a signal-to-noise ratio of 453.2 was measured by implementing the 12.4 kHz QTF-based ADM, ~3.3 times greater than the value obtained using a standard QTF. The minimum ethane concentration detectable using a 100 ms lock-in integration time achieving the 12.4 kHz custom QTF was 22 ppm.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/285404
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact