We provide a systematic study of a noncommutative extension of the classical Anzai skew-product for the cartesian product of two copies of the unit circle to the noncommutative 2-tori. In particular, some relevant ergodic properties are proved for these quantum dynamical systems, extending the corresponding ones enjoyed by the classical Anzai skew-product. As an application, for a uniquely ergodic Anzai skew-product Φ on the noncommutative 2-torus $mathbb{A}_alpha$, $alphainmathbb{R}$, we investigate the pointwise limit, $lim_{n ightarrowinfty}rac{1}{n}sum_{k=0}^{n-1}lambda^{-k}Phi^k(x)$, for $xinmathbb{A}_alpha$ and $lambda$ apoint in the unit circle, and show that there exist examples for which the limit does not exist even in the weak topology.

Ergodic properties of the Anzai skew-product on the noncommutative torus

Simone Del Vecchio;Stefano Rossi
2021-01-01

Abstract

We provide a systematic study of a noncommutative extension of the classical Anzai skew-product for the cartesian product of two copies of the unit circle to the noncommutative 2-tori. In particular, some relevant ergodic properties are proved for these quantum dynamical systems, extending the corresponding ones enjoyed by the classical Anzai skew-product. As an application, for a uniquely ergodic Anzai skew-product Φ on the noncommutative 2-torus $mathbb{A}_alpha$, $alphainmathbb{R}$, we investigate the pointwise limit, $lim_{n ightarrowinfty}rac{1}{n}sum_{k=0}^{n-1}lambda^{-k}Phi^k(x)$, for $xinmathbb{A}_alpha$ and $lambda$ apoint in the unit circle, and show that there exist examples for which the limit does not exist even in the weak topology.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/276424
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact