Vulcano is one of the 7 volcanic islands and 6 seamounts forming the Aeolian volcanic district (Italy). Vulcano has a long eruptive record, and its last eruption (1888–90) originated the definition of the Vulcanian eruptive style. Like most volcanic islands, Vulcano generates many potentially interconnected hazards, determining a potentially high risk. Here, we review the state of knowledge on its geology, eruptive activity, historical accounts, structural setting, geophysical and geochemical surveillance, and available hazard quantifications, in order to have an updated picture of the state knowledge on volcanic hazard. We follow a prototypal reviewing scheme, based on three standardized steps: i) review of the volcanic system; ii) review of available eruptive and non-eruptive hazard quantifications; iii) development of a conceptual interpretative model. We find that, while a rather vast literature is dedicated to the volcanic system of Vulcano and the reconstruction of past events, few quantitative hazard assessments exist. In addition, the range of natural variability considered for each hazard is potentially underestimated (e.g. limited range of considered eruption magnitude and style and of vent position), as it is the potential effect of multi-hazard impact. The developed conceptual model for the feeding system provides a synthetic picture of the present knowledge about the system, as emerged from the review. In addition, it allows for the identification of potential paths-to-eruption and provides a first order link among the main hazards. This review provides an up-to-date snapshot of existing knowledge on volcanic hazard at Vulcano on which to build future hazard quantifications as well as to support present and future decision making.

Multiple hazards and paths to eruptions: A review of the volcanic system of Volcano (Aeolian Islands, Italy)

Sulpizio, R.;
2020

Abstract

Vulcano is one of the 7 volcanic islands and 6 seamounts forming the Aeolian volcanic district (Italy). Vulcano has a long eruptive record, and its last eruption (1888–90) originated the definition of the Vulcanian eruptive style. Like most volcanic islands, Vulcano generates many potentially interconnected hazards, determining a potentially high risk. Here, we review the state of knowledge on its geology, eruptive activity, historical accounts, structural setting, geophysical and geochemical surveillance, and available hazard quantifications, in order to have an updated picture of the state knowledge on volcanic hazard. We follow a prototypal reviewing scheme, based on three standardized steps: i) review of the volcanic system; ii) review of available eruptive and non-eruptive hazard quantifications; iii) development of a conceptual interpretative model. We find that, while a rather vast literature is dedicated to the volcanic system of Vulcano and the reconstruction of past events, few quantitative hazard assessments exist. In addition, the range of natural variability considered for each hazard is potentially underestimated (e.g. limited range of considered eruption magnitude and style and of vent position), as it is the potential effect of multi-hazard impact. The developed conceptual model for the feeding system provides a synthetic picture of the present knowledge about the system, as emerged from the review. In addition, it allows for the identification of potential paths-to-eruption and provides a first order link among the main hazards. This review provides an up-to-date snapshot of existing knowledge on volcanic hazard at Vulcano on which to build future hazard quantifications as well as to support present and future decision making.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/273741
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact