Cochlear implants (CIs) are primarily designed to assist deaf individuals in perception of speech, although possibilities for music fruition have also been documented. Previous stud-ies have indicated the existence of neural correlates of residual music skills in postlingually deaf adults and children. However, little is known about the behavioral and neural correlates of music perception in the new generation of prelingually deaf adolescents who grew up with CIs.With electroencephalography (EEG),we recorded the mismatch negativity (MMN) of the auditory event-related potential to changes in musical features in adolescent CI users and in normal-hearing (NH) age mates. EEG recordings and behavioral testing were car-ried out before (T1) and after (T2) a 2-week music training program for the CI users and in two sessions equally separated in time for NH controls. We found significant MMNs in adolescent CI users for deviations in timbre, intensity, and rhythm, indicating residual neural prerequisites for musical feature processing. By contrast, only one of the two pitch deviants elicited an MMN in CI users. This pitch discrimination deficit was supported by behavioral measures, in which CI users scored significantly below the NH level. Overall, MMN amplitudes were significantly smaller in CI users than in NH controls, suggesting poorer music discrimination ability. Despite compliance from the CI participants, we found no effect of the music training, likely resulting from the brevity of the program. This is the first study showing significant brain responses to musical feature changes in prelingually deaf adolescent CI users and their associations with behavioral measures, implying neural predispositions for at least some aspects of music processing. Future studies should test any beneficial effects of a longer lasting music intervention in adolescent CI users.

Brain responses to musical feature changes in adolescent cochlear implant users

Brattico E.
Formal Analysis
;
2015

Abstract

Cochlear implants (CIs) are primarily designed to assist deaf individuals in perception of speech, although possibilities for music fruition have also been documented. Previous stud-ies have indicated the existence of neural correlates of residual music skills in postlingually deaf adults and children. However, little is known about the behavioral and neural correlates of music perception in the new generation of prelingually deaf adolescents who grew up with CIs.With electroencephalography (EEG),we recorded the mismatch negativity (MMN) of the auditory event-related potential to changes in musical features in adolescent CI users and in normal-hearing (NH) age mates. EEG recordings and behavioral testing were car-ried out before (T1) and after (T2) a 2-week music training program for the CI users and in two sessions equally separated in time for NH controls. We found significant MMNs in adolescent CI users for deviations in timbre, intensity, and rhythm, indicating residual neural prerequisites for musical feature processing. By contrast, only one of the two pitch deviants elicited an MMN in CI users. This pitch discrimination deficit was supported by behavioral measures, in which CI users scored significantly below the NH level. Overall, MMN amplitudes were significantly smaller in CI users than in NH controls, suggesting poorer music discrimination ability. Despite compliance from the CI participants, we found no effect of the music training, likely resulting from the brevity of the program. This is the first study showing significant brain responses to musical feature changes in prelingually deaf adolescent CI users and their associations with behavioral measures, implying neural predispositions for at least some aspects of music processing. Future studies should test any beneficial effects of a longer lasting music intervention in adolescent CI users.
File in questo prodotto:
File Dimensione Formato  
Petersen15_Brain responses in adolescent CI users.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.95 MB
Formato Adobe PDF
3.95 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/269124
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 22
social impact