BACKGROUND: The clinical high risk (CHR) paradigm has facilitated research into the underpinnings of help-seeking individuals at risk for developing psychosis, aiming at predicting and possibly preventing transition to the overt disorder. Statistical methods such as machine learning and Cox regression have provided the methodological basis for this research by enabling the construction of diagnostic models (i.e., distinguishing CHR individuals from healthy individuals) and prognostic models (i.e., predicting a future outcome) based on different data modalities, including clinical, neurocognitive, and neurobiological data. However, their translation to clinical practice is still hindered by the high heterogeneity of both CHR populations and methodologies applied. METHODS: We systematically reviewed the literature on diagnostic and prognostic models built on Cox regression and machine learning. Furthermore, we conducted a meta-analysis on prediction performances investigating heterogeneity of methodological approaches and data modality. RESULTS: A total of 44 articles were included, covering 3707 individuals for prognostic studies and 1052 individuals for diagnostic studies (572 CHR patients and 480 healthy control subjects). CHR patients could be classified against healthy control subjects with 78% sensitivity and 77% specificity. Across prognostic models, sensitivity reached 67% and specificity reached 78%. Machine learning models outperformed those applying Cox regression by 10% sensitivity. There was a publication bias for prognostic studies yet no other moderator effects. CONCLUSIONS: Our results may be driven by substantial clinical and methodological heterogeneity currently affecting several aspects of the CHR field and limiting the clinical implementability of the proposed models. We discuss conceptual and methodological harmonization strategies to facilitate more reliable and generalizable models for future clinical practice.

Individualized Diagnostic and Prognostic Models for Patients With Psychosis Risk Syndromes: A Meta-analytic View on the State of the Art

Linda A. Antonucci
Writing – Review & Editing
;
2020-01-01

Abstract

BACKGROUND: The clinical high risk (CHR) paradigm has facilitated research into the underpinnings of help-seeking individuals at risk for developing psychosis, aiming at predicting and possibly preventing transition to the overt disorder. Statistical methods such as machine learning and Cox regression have provided the methodological basis for this research by enabling the construction of diagnostic models (i.e., distinguishing CHR individuals from healthy individuals) and prognostic models (i.e., predicting a future outcome) based on different data modalities, including clinical, neurocognitive, and neurobiological data. However, their translation to clinical practice is still hindered by the high heterogeneity of both CHR populations and methodologies applied. METHODS: We systematically reviewed the literature on diagnostic and prognostic models built on Cox regression and machine learning. Furthermore, we conducted a meta-analysis on prediction performances investigating heterogeneity of methodological approaches and data modality. RESULTS: A total of 44 articles were included, covering 3707 individuals for prognostic studies and 1052 individuals for diagnostic studies (572 CHR patients and 480 healthy control subjects). CHR patients could be classified against healthy control subjects with 78% sensitivity and 77% specificity. Across prognostic models, sensitivity reached 67% and specificity reached 78%. Machine learning models outperformed those applying Cox regression by 10% sensitivity. There was a publication bias for prognostic studies yet no other moderator effects. CONCLUSIONS: Our results may be driven by substantial clinical and methodological heterogeneity currently affecting several aspects of the CHR field and limiting the clinical implementability of the proposed models. We discuss conceptual and methodological harmonization strategies to facilitate more reliable and generalizable models for future clinical practice.
File in questo prodotto:
File Dimensione Formato  
Sanfelici2020.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/267698
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 56
social impact