Background: Tools able to predict pathological complete response (pCR) to preoperative chemotherapy might improve treatment outcome. Patients and methods: Data from 783 patients with invasive ductal carcinoma treated with preoperative chemotherapy and operated at the European Institute of Oncology were used to develop a nomogram using logistic regression model based on both categorical (clinical T and N, HER2/neu, grade and primary therapy) and continuous variables (age, oestrogen receptor (ER), progesterone receptor (PgR), Ki-67 expression and number of chemotherapy courses). The performance of the resulting nomogram was internally evaluated through bootstrapping methods. Finally the model was externally validated on a patient set treated in other institutions and subsequently operated at the EIO. Results: At multivariable analysis the probability of pCR was directly associated with Ki-67 expression (OR for 10% increase in the percentage of positive cells, 1.15, 95% confidence interval (CI), 1.03, 1.29) and number of chemotherapy courses (OR for one cycle increase, 1.31, 95% CI, 1.12, 1.53) and inversely associated with ER and PgR expression (ORs for 10% increase in the percentage of positive cells, 0.86, 95% CI 0.79, 0.93 and 0.82, 95% CI 0.69, 0.99, respectively). The nomogram for pCR based on these variables had good discrimination in training as well in validation set (AUC, 0.78 and 0.77). Conclusion: The use of a nomogram based on the number of preoperative courses, degree of Ki-67 and steroid hormone receptors expression may be useful for predicting the probability of pCR and for the design of the proper therapeutic algorithm in locally advanced breast cancer. © 2010 Elsevier Ltd. All rights reserved.

A nomogram based on the expression of Ki-67, steroid hormone receptors status and number of chemotherapy courses to predict pathological complete remission after preoperative chemotherapy for breast cancer

Mastropasqua M.
Investigation
;
2010

Abstract

Background: Tools able to predict pathological complete response (pCR) to preoperative chemotherapy might improve treatment outcome. Patients and methods: Data from 783 patients with invasive ductal carcinoma treated with preoperative chemotherapy and operated at the European Institute of Oncology were used to develop a nomogram using logistic regression model based on both categorical (clinical T and N, HER2/neu, grade and primary therapy) and continuous variables (age, oestrogen receptor (ER), progesterone receptor (PgR), Ki-67 expression and number of chemotherapy courses). The performance of the resulting nomogram was internally evaluated through bootstrapping methods. Finally the model was externally validated on a patient set treated in other institutions and subsequently operated at the EIO. Results: At multivariable analysis the probability of pCR was directly associated with Ki-67 expression (OR for 10% increase in the percentage of positive cells, 1.15, 95% confidence interval (CI), 1.03, 1.29) and number of chemotherapy courses (OR for one cycle increase, 1.31, 95% CI, 1.12, 1.53) and inversely associated with ER and PgR expression (ORs for 10% increase in the percentage of positive cells, 0.86, 95% CI 0.79, 0.93 and 0.82, 95% CI 0.69, 0.99, respectively). The nomogram for pCR based on these variables had good discrimination in training as well in validation set (AUC, 0.78 and 0.77). Conclusion: The use of a nomogram based on the number of preoperative courses, degree of Ki-67 and steroid hormone receptors expression may be useful for predicting the probability of pCR and for the design of the proper therapeutic algorithm in locally advanced breast cancer. © 2010 Elsevier Ltd. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/266205
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 36
social impact