Nanomaterials represent a class of materials based on nanoscale structures. Nanomaterials are currently used in a wide variety of applications, including, optoelectronics, energy conversion, biology health care and medicine. Among different types of nanomaterials, gold nanoparticles have received considerable attention in disease diagnosis and therapy due to their optical and chemical properties (Liz-Marzan in Mater Today 7:26–31, 2004). This paper reports the main optical and photo-thermal properties of gold nanoparticles. Particularly, we show that gold nanorods embedded in cholesteric liquid crystals demonstrate to control the “selective reflection” of a light beam. Investigation of the optical properties of the obtained material reveals an original and efficient tool to detect temperature variations at the nanoscale useful for photo-thermal based therapies applications. Finally, the concept of ‘nanoparticle-protein corona interaction can be exploited for application ranging from regenerative medicine to theranostics.

Applications of nanomaterials in modern medicine

Placido T.;Curri M. L.;Agostiano A.;
2015

Abstract

Nanomaterials represent a class of materials based on nanoscale structures. Nanomaterials are currently used in a wide variety of applications, including, optoelectronics, energy conversion, biology health care and medicine. Among different types of nanomaterials, gold nanoparticles have received considerable attention in disease diagnosis and therapy due to their optical and chemical properties (Liz-Marzan in Mater Today 7:26–31, 2004). This paper reports the main optical and photo-thermal properties of gold nanoparticles. Particularly, we show that gold nanorods embedded in cholesteric liquid crystals demonstrate to control the “selective reflection” of a light beam. Investigation of the optical properties of the obtained material reveals an original and efficient tool to detect temperature variations at the nanoscale useful for photo-thermal based therapies applications. Finally, the concept of ‘nanoparticle-protein corona interaction can be exploited for application ranging from regenerative medicine to theranostics.
File in questo prodotto:
File Dimensione Formato  
Sio2015_Rendiconti Lincei.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/263064
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact