Plasmonic metallic nanoparticles (NPs) represent a relevant class of nanomaterials, which is able to achieve light localization down to nanoscale by exploiting a phenomenon called Localized Plasmon Resonance. In the last few years, NPs have been proposed to trigger DNA release or enhance ablation of diseased tissues, while minimizing damage to healthy tissues. In view of the therapeutic relevance of such plasmonic NPs, a detailed characterization of the electrostatic interaction between positively charged gold nanorods (GNRs) and a negatively charged whole-genome DNA solution is reported. The preparation of the hybrid biosystem has been investigated as a function of DNA concentration by means of ζ-potential, hydrodynamic diameter and gel electrophoresis analysis. The results have pointed out the specific conditions to achieve the most promising GNRs/DNA complex and its photo-thermal properties have been investigated. The overall study allows to envisage the possibility to ingeniously combine plasmonic and biological materials and, thus, enable design and development of an original non invasive all-optical methodology for monitoring photo-induced temperature variation with high sensitivity.

Plasmonics meets biology through optics

Placido T.;Curri M. L.;Agostiano A.;
2015

Abstract

Plasmonic metallic nanoparticles (NPs) represent a relevant class of nanomaterials, which is able to achieve light localization down to nanoscale by exploiting a phenomenon called Localized Plasmon Resonance. In the last few years, NPs have been proposed to trigger DNA release or enhance ablation of diseased tissues, while minimizing damage to healthy tissues. In view of the therapeutic relevance of such plasmonic NPs, a detailed characterization of the electrostatic interaction between positively charged gold nanorods (GNRs) and a negatively charged whole-genome DNA solution is reported. The preparation of the hybrid biosystem has been investigated as a function of DNA concentration by means of ζ-potential, hydrodynamic diameter and gel electrophoresis analysis. The results have pointed out the specific conditions to achieve the most promising GNRs/DNA complex and its photo-thermal properties have been investigated. The overall study allows to envisage the possibility to ingeniously combine plasmonic and biological materials and, thus, enable design and development of an original non invasive all-optical methodology for monitoring photo-induced temperature variation with high sensitivity.
File in questo prodotto:
File Dimensione Formato  
nanomaterials De Sio 2015.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/263051
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact