Let V be an affine toric variety of codimension r over a field of any characteristic. We completely characterize the affine toric varieties that are set-theoretic complete intersections on binomials. In particular we prove that in the characteristic zero case, V is a set-theoretic complete intersection on binomials if and only if V is a complete intersection. Moreover, if F1, ..., Fr are binomials such that I(V) = rad(F1, ... , Fr), then I(V) = (F1, ... , Fr). While in the positive characteristic p case, V is a set-theoretic complete intersection on binomials if and only if V is completely p-glued. These results improve and complete all known results on these topics.

Set-theoretic complete intersections on binomials

BARILE, Margherita;
2002-01-01

Abstract

Let V be an affine toric variety of codimension r over a field of any characteristic. We completely characterize the affine toric varieties that are set-theoretic complete intersections on binomials. In particular we prove that in the characteristic zero case, V is a set-theoretic complete intersection on binomials if and only if V is a complete intersection. Moreover, if F1, ..., Fr are binomials such that I(V) = rad(F1, ... , Fr), then I(V) = (F1, ... , Fr). While in the positive characteristic p case, V is a set-theoretic complete intersection on binomials if and only if V is completely p-glued. These results improve and complete all known results on these topics.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/2630
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 29
social impact