Platinum-based chemotherapeutics exhibit excellent antitumor properties. However, these drugs cause severe side effects including toxicity, drug resistance, and lack of tumor selectivity. Tumor-targeted drug delivery has demonstrated great potential to overcome these drawbacks. Herein, we aimed to design radioactive bisphosphonate-functionalized platinum (195mPt-BP) complexes to confirm preferential accumulation of these Pt-based drugs in metabolically active bone. In vitro NMR studies revealed that release of Pt from Pt BP complexes increased with decreasing pH. Upon systemic administration to mice, Pt-BP exhibited a 4.5-fold higher affinity to bone compared to platinum complexes lacking the bone-seeking bisphosphonate moiety. These Pt-BP complexes formed less Pt-DNA adducts compared to bisphosphonate-free platinum complexes, indicating that in vivo release of Pt from Pt-BP complexes proceeded relatively slow. Subsequently, radioactive 195mPt-BP complexes were synthesized using 195mPt(NO3)2(en) as precursor and injected intravenously into mice. Specific accumulation of 195mPt-BP was observed at skeletal sites with high metabolic activity using micro-SPECT/CT imaging. Furthermore, laser ablation-ICP-MS imaging of proximal tibia sections confirmed that 195mPt BP co-localized with calcium in the trabeculae of mice tibia.

Targeting of radioactive platinum-bisphosphonate anticancer drugs to bone of high metabolic activity

Curci, Alessandra;Margiotta, Nicola;
2020-01-01

Abstract

Platinum-based chemotherapeutics exhibit excellent antitumor properties. However, these drugs cause severe side effects including toxicity, drug resistance, and lack of tumor selectivity. Tumor-targeted drug delivery has demonstrated great potential to overcome these drawbacks. Herein, we aimed to design radioactive bisphosphonate-functionalized platinum (195mPt-BP) complexes to confirm preferential accumulation of these Pt-based drugs in metabolically active bone. In vitro NMR studies revealed that release of Pt from Pt BP complexes increased with decreasing pH. Upon systemic administration to mice, Pt-BP exhibited a 4.5-fold higher affinity to bone compared to platinum complexes lacking the bone-seeking bisphosphonate moiety. These Pt-BP complexes formed less Pt-DNA adducts compared to bisphosphonate-free platinum complexes, indicating that in vivo release of Pt from Pt-BP complexes proceeded relatively slow. Subsequently, radioactive 195mPt-BP complexes were synthesized using 195mPt(NO3)2(en) as precursor and injected intravenously into mice. Specific accumulation of 195mPt-BP was observed at skeletal sites with high metabolic activity using micro-SPECT/CT imaging. Furthermore, laser ablation-ICP-MS imaging of proximal tibia sections confirmed that 195mPt BP co-localized with calcium in the trabeculae of mice tibia.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/262622
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 15
social impact