Incubating in the rise of perovskite photovoltaic era, the advances in material design encourage further promising optoelectronic exploitations. Here, we evaluate halide perovskite envisioning light-emitting applications, with a particular focus to the role that this material can effectively play in the field, discussing advantages and limitations with respect to state of art competing players. Specific benefits derive from the use of low dimensional and nanostructured perovskites, marginally exploited in photovoltaic devices, allowing for a tuning of the excited states properties and for the obtainment of intrinsic resonating structures. Thanks to these unique properties, halide perovskite ensure a great potential for the development of high-power applications, such as lighting and lasing.
The Bright Side of Perovskites
Gigli GiuseppeMembro del Collaboration Group
;Listorti Andrea
2016-01-01
Abstract
Incubating in the rise of perovskite photovoltaic era, the advances in material design encourage further promising optoelectronic exploitations. Here, we evaluate halide perovskite envisioning light-emitting applications, with a particular focus to the role that this material can effectively play in the field, discussing advantages and limitations with respect to state of art competing players. Specific benefits derive from the use of low dimensional and nanostructured perovskites, marginally exploited in photovoltaic devices, allowing for a tuning of the excited states properties and for the obtainment of intrinsic resonating structures. Thanks to these unique properties, halide perovskite ensure a great potential for the development of high-power applications, such as lighting and lasing.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.