The progressive degeneration of nigrostriatal neurons leads to depletion of the neurotransmitter dopamine (DA) in Parkinson’s disease (PD). The hydrophilicity of DA, hindering its cross of the Blood Brain Barrier, makes impossible its therapeutic administration. This work aims at investigating some physicochemical features of novel Solid Lipid Nanoparticles (SLN) intended to enhance DA brain delivery for PD patients by intranasal administration. For this aim, novel SLN were formulated in the presence of Glycol Chitosan (GCS), and it was found that SLN containing GCS and DA were smaller than DA-loaded SLN, endowed with a slightly positive zeta potential value and, remarkably, incorporated 81 % ofthe initial DA content. The formulated SLN were accurately characterized by Infrared Spectroscopy in Attenuated Total Reflectance mode (FT-IT/ATR) and Thermogravimetric Analysis (TGA) to highlight SLN solid-state properties as a preliminary step forward biological assay. Overall, in vitro characterization shows that SLN are promising for DA incorporation and stable from a thermal viewpoint. Further studies are in due course to test their potential for PD treatmen

In vitro investigations on dopamine loaded Solid Lipid Nanoparticles

Bonifacio MA;Trapani G;De Giglio E;Trapani A
2020

Abstract

The progressive degeneration of nigrostriatal neurons leads to depletion of the neurotransmitter dopamine (DA) in Parkinson’s disease (PD). The hydrophilicity of DA, hindering its cross of the Blood Brain Barrier, makes impossible its therapeutic administration. This work aims at investigating some physicochemical features of novel Solid Lipid Nanoparticles (SLN) intended to enhance DA brain delivery for PD patients by intranasal administration. For this aim, novel SLN were formulated in the presence of Glycol Chitosan (GCS), and it was found that SLN containing GCS and DA were smaller than DA-loaded SLN, endowed with a slightly positive zeta potential value and, remarkably, incorporated 81 % ofthe initial DA content. The formulated SLN were accurately characterized by Infrared Spectroscopy in Attenuated Total Reflectance mode (FT-IT/ATR) and Thermogravimetric Analysis (TGA) to highlight SLN solid-state properties as a preliminary step forward biological assay. Overall, in vitro characterization shows that SLN are promising for DA incorporation and stable from a thermal viewpoint. Further studies are in due course to test their potential for PD treatmen
File in questo prodotto:
File Dimensione Formato  
2020 JPBA.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 773.17 kB
Formato Adobe PDF
773.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/258849
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact