The research on meteorites from hot and cold deserts is gaining advantages from the recent improvements of portable technologies such as X-ray fluorescence spectroscopy (XRF). The main advantages of portable instruments include the fast recognition of meteorites through their classification in macro-groups and discrimination from materials such as industrial slags, desert varnish covered rocks and iron oxides, named “meteor-wrongs”. In this study, 18 meteorite samples of different nature and origin were discriminated and preliminarily classified into characteristic macro-groups: iron meteorites, stony meteorites and meteor-wrongs, combining a portable energy dispersive XRF instrument (pED-XRF), principal component analysis (PCA) and some machine learning algorithms applied to the XRF spectra. The results showed that 100% accuracy in sample classification was obtained by applying the cubic support vector machine (CSVM), fine kernel nearest neighbor (FKNN), subspace discriminant-ensemble classifiers (SD-EC) and subspace discriminant KNN-EC (SKNN-EC) algorithms on standardized spectra.
Macro-classification of meteorites by portable energy dispersive X-ray fluorescence spectroscopy (pED-XRF), principal component analysis (PCA) and machine learning algorithms
Porfido C.;Terzano R.;
2020-01-01
Abstract
The research on meteorites from hot and cold deserts is gaining advantages from the recent improvements of portable technologies such as X-ray fluorescence spectroscopy (XRF). The main advantages of portable instruments include the fast recognition of meteorites through their classification in macro-groups and discrimination from materials such as industrial slags, desert varnish covered rocks and iron oxides, named “meteor-wrongs”. In this study, 18 meteorite samples of different nature and origin were discriminated and preliminarily classified into characteristic macro-groups: iron meteorites, stony meteorites and meteor-wrongs, combining a portable energy dispersive XRF instrument (pED-XRF), principal component analysis (PCA) and some machine learning algorithms applied to the XRF spectra. The results showed that 100% accuracy in sample classification was obtained by applying the cubic support vector machine (CSVM), fine kernel nearest neighbor (FKNN), subspace discriminant-ensemble classifiers (SD-EC) and subspace discriminant KNN-EC (SKNN-EC) algorithms on standardized spectra.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S003991402030076X-main.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
TALANTA 2020 Meteorites submitted version - .pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.