The aim of this paper is to propose a new methodology that allows forecasting, through Vasicek and CIR models, of future expected interest rates (for each maturity) based on rolling windows from observed financial market data. The novelty, apart from the use of those models not for pricing but for forecasting the expected rates at a given maturity, consists in an appropriate partitioning of the data sample. This allows capturing all the statistically significant time changes in volatility of interest rates, thus giving an account of jumps in market dynamics. The performance of the new approach is carried out for different term structures and is tested for both models. It is shown how the proposed methodology overcomes both the usual challenges (e.g. simulating regime switching, volatility clustering, skewed tails, etc.) as well as the new ones added by the current market environment characterized by low to negative interest rates.

Forecasting interest rates through Vasicek and CIR models: a partitioning approach

Giuseppe Orlando;Rosamaria Mininni;
2019-01-01

Abstract

The aim of this paper is to propose a new methodology that allows forecasting, through Vasicek and CIR models, of future expected interest rates (for each maturity) based on rolling windows from observed financial market data. The novelty, apart from the use of those models not for pricing but for forecasting the expected rates at a given maturity, consists in an appropriate partitioning of the data sample. This allows capturing all the statistically significant time changes in volatility of interest rates, thus giving an account of jumps in market dynamics. The performance of the new approach is carried out for different term structures and is tested for both models. It is shown how the proposed methodology overcomes both the usual challenges (e.g. simulating regime switching, volatility clustering, skewed tails, etc.) as well as the new ones added by the current market environment characterized by low to negative interest rates.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/254112
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact