The vacuum energy density arising from the broken supersymmetry of the (standard-model) fields living on a brane cannot be fully "off-loaded" to the bulk: even assuming the existence of an effective "self-tuning" mechanism, a small fraction of the transferred energy "bunces back" to the brane, as a backreaction of the supersymmetry breaking gravitationally transmitted to the bulk. In that case the SUSY scale of the brane has to be bounded, to guarantee the consistency of such a residual energy density with current large-scale phenomonological constraints. This effect is illustrated by computing the zero-point energies of the tower of (higher-dimensional) massive states associated to tensor metric fluctuations on a brane embedded in a warped bulk geometry, and it is shown to be independent of the number of compact or non-compact extra dimensions.
Higher-dimensional perturbations of the vacuum energy density
GASPERINI, Maurizio
2008-01-01
Abstract
The vacuum energy density arising from the broken supersymmetry of the (standard-model) fields living on a brane cannot be fully "off-loaded" to the bulk: even assuming the existence of an effective "self-tuning" mechanism, a small fraction of the transferred energy "bunces back" to the brane, as a backreaction of the supersymmetry breaking gravitationally transmitted to the bulk. In that case the SUSY scale of the brane has to be bounded, to guarantee the consistency of such a residual energy density with current large-scale phenomonological constraints. This effect is illustrated by computing the zero-point energies of the tower of (higher-dimensional) massive states associated to tensor metric fluctuations on a brane embedded in a warped bulk geometry, and it is shown to be independent of the number of compact or non-compact extra dimensions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.