Examples of slant submanifolds in the Sasakian space R^{2n+1} are obtained as the leaves of a harmonic, Riemannian 3-dimensional foliation. With the exception of the anti-invariant ones, these leaves are all locally homogeneous manifolds with negative scalar curvature, whose Ricci tensor satisfies (del(X)S)(X, X)= 0 for all tangent vector fields.

Foliations of the Sasakian space R2n+1 by minimal slant submanifolds

LOTTA, Antonio
1999-01-01

Abstract

Examples of slant submanifolds in the Sasakian space R^{2n+1} are obtained as the leaves of a harmonic, Riemannian 3-dimensional foliation. With the exception of the anti-invariant ones, these leaves are all locally homogeneous manifolds with negative scalar curvature, whose Ricci tensor satisfies (del(X)S)(X, X)= 0 for all tangent vector fields.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/25108
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact