Recently, Hamiltonian Boundary Value Methods (HBVMs), have been used for effectively solving multi-frequency, highly-oscillatory and/or stiffly-oscillatory problems. We here report a few examples showing that, when numerically solving Hamiltonian PDEs, such methods, if coupled with a spectrally accurate space semi-discretization, are able to provide a spectrally accurate solution in time, as well.

Space-time spectrally accurate HBVMs for Hamiltonian PDEs

Iavernaro F.;
2019

Abstract

Recently, Hamiltonian Boundary Value Methods (HBVMs), have been used for effectively solving multi-frequency, highly-oscillatory and/or stiffly-oscillatory problems. We here report a few examples showing that, when numerically solving Hamiltonian PDEs, such methods, if coupled with a spectrally accurate space semi-discretization, are able to provide a spectrally accurate solution in time, as well.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/250498
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact