Recently, Hamiltonian Boundary Value Methods (HBVMs), have been used for effectively solving multi-frequency, highly-oscillatory and/or stiffly-oscillatory problems. We here report a few examples showing that, when numerically solving Hamiltonian PDEs, such methods, if coupled with a spectrally accurate space semi-discretization, are able to provide a spectrally accurate solution in time, as well.
Space-time spectrally accurate HBVMs for Hamiltonian PDEs
Iavernaro F.;
2019-01-01
Abstract
Recently, Hamiltonian Boundary Value Methods (HBVMs), have been used for effectively solving multi-frequency, highly-oscillatory and/or stiffly-oscillatory problems. We here report a few examples showing that, when numerically solving Hamiltonian PDEs, such methods, if coupled with a spectrally accurate space semi-discretization, are able to provide a spectrally accurate solution in time, as well.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.