A comprehensive structural characterization of the complex family of isomeric forms related to Oleuropein aglycone (OA) detected in virgin olive oil (VOO) was performed by reverse phase liquid chromatography with electrospray ionization and Fourier-transform mass spectrometry (RPLC-ESI-FTMS), integrated by enzymatic/chemical reactions performed on Oleuropein, the natural precursor of OA. First, some of the OA-related isomers typically observed in VOO extracts were generated upon enzymatic hydrolysis of the glycosidic linkage of Oleuropein. This step mimicked the process occurring during olive drupes crushing in the first stage of oil production. The incubation of the enzymatic reaction mixture at a more acidic pH was subsequently performed, to simulate the conditions of olive paste malaxation during oil production. As a result, further isomeric forms were generated and the complex chromatographic profile typically observed for OA in olive oil extracts, including at least 13 different peaks/bands/groups of peaks, was carefully reproduced. Each of those chromatographic features could be subsequently assigned to specific types of OA-related isomers, belonging to one of four structurally different classes. Specifically, diastereoisomers/geometrical isomers corresponding to two different types of open-structure forms and to as many types of closed-structure, di-hydropyranic forms of OA, characterized by the presence of one or two carbonyl groups, according to the case, were evidenced. In addition, the presence of stable enolic/dienolic tautomers, providing an indirect structural confirmation for some OA isomers, was ascertained through RPLC-ESI-FTMS analyses performed under H/D exchange conditions, i.e. in the presence of deuterated water as one of the mobile phase solvents.

A comprehensive study of oleuropein aglycone isomers in olive oil by enzymatic/chemical processes and liquid chromatography-Fourier transform mass spectrometry integrated by H/D exchange

R. Abbattista;I. Losito
;
C. De Ceglie;C. D. Calvano;F. Palmisano;T. R. I. Cataldi
2019

Abstract

A comprehensive structural characterization of the complex family of isomeric forms related to Oleuropein aglycone (OA) detected in virgin olive oil (VOO) was performed by reverse phase liquid chromatography with electrospray ionization and Fourier-transform mass spectrometry (RPLC-ESI-FTMS), integrated by enzymatic/chemical reactions performed on Oleuropein, the natural precursor of OA. First, some of the OA-related isomers typically observed in VOO extracts were generated upon enzymatic hydrolysis of the glycosidic linkage of Oleuropein. This step mimicked the process occurring during olive drupes crushing in the first stage of oil production. The incubation of the enzymatic reaction mixture at a more acidic pH was subsequently performed, to simulate the conditions of olive paste malaxation during oil production. As a result, further isomeric forms were generated and the complex chromatographic profile typically observed for OA in olive oil extracts, including at least 13 different peaks/bands/groups of peaks, was carefully reproduced. Each of those chromatographic features could be subsequently assigned to specific types of OA-related isomers, belonging to one of four structurally different classes. Specifically, diastereoisomers/geometrical isomers corresponding to two different types of open-structure forms and to as many types of closed-structure, di-hydropyranic forms of OA, characterized by the presence of one or two carbonyl groups, according to the case, were evidenced. In addition, the presence of stable enolic/dienolic tautomers, providing an indirect structural confirmation for some OA isomers, was ascertained through RPLC-ESI-FTMS analyses performed under H/D exchange conditions, i.e. in the presence of deuterated water as one of the mobile phase solvents.
File in questo prodotto:
File Dimensione Formato  
Losito_Talanta 2019.pdf

non disponibili

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/250117
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact