We prove a sharp version of the Hardy uncertainty principle for Schrödinger equations with external bounded electromagnetic potentials, based on logarithmic convexity properties of Schrödinger evolutions. We provide, in addition, an example of a real electromagnetic potential which produces the existence of solutions with critical gaussian decay, at two distinct times.
Sharp Hardy uncertainty principle and gaussian profiles of covariant Schrödinger evolutions
Cassano, B.;
2015-01-01
Abstract
We prove a sharp version of the Hardy uncertainty principle for Schrödinger equations with external bounded electromagnetic potentials, based on logarithmic convexity properties of Schrödinger evolutions. We provide, in addition, an example of a real electromagnetic potential which produces the existence of solutions with critical gaussian decay, at two distinct times.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1. CassanoFanelli - Sharp Hardy Uncertainty Principle and Gaussian Profiles of Covariant Schrodinger Evolutions.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
309.4 kB
Formato
Adobe PDF
|
309.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.