We prove a sharp version of the Hardy uncertainty principle for Schrödinger equations with external bounded electromagnetic potentials, based on logarithmic convexity properties of Schrödinger evolutions. We provide, in addition, an example of a real electromagnetic potential which produces the existence of solutions with critical gaussian decay, at two distinct times.

Sharp Hardy uncertainty principle and gaussian profiles of covariant Schrödinger evolutions

Cassano, B.;
2015-01-01

Abstract

We prove a sharp version of the Hardy uncertainty principle for Schrödinger equations with external bounded electromagnetic potentials, based on logarithmic convexity properties of Schrödinger evolutions. We provide, in addition, an example of a real electromagnetic potential which produces the existence of solutions with critical gaussian decay, at two distinct times.
File in questo prodotto:
File Dimensione Formato  
1. CassanoFanelli - Sharp Hardy Uncertainty Principle and Gaussian Profiles of Covariant Schrodinger Evolutions.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 309.4 kB
Formato Adobe PDF
309.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/249973
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact